These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy. Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202 [TBL] [Abstract][Full Text] [Related]
6. Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules. Plochowietz A; Crawford R; Kapanidis AN Phys Chem Chem Phys; 2014 Jul; 16(25):12688-94. PubMed ID: 24837080 [TBL] [Abstract][Full Text] [Related]
7. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253 [TBL] [Abstract][Full Text] [Related]
8. Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. Tisler J; Reuter R; Lämmle A; Jelezko F; Balasubramanian G; Hemmer PR; Reinhard F; Wrachtrup J ACS Nano; 2011 Oct; 5(10):7893-8. PubMed ID: 21899301 [TBL] [Abstract][Full Text] [Related]
9. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. Hoefling M; Lima N; Haenni D; Seidel CA; Schuler B; Grubmüller H PLoS One; 2011; 6(5):e19791. PubMed ID: 21629703 [TBL] [Abstract][Full Text] [Related]
10. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670 [TBL] [Abstract][Full Text] [Related]
11. Analyzing Förster resonance energy transfer with fluctuation algorithms. Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107 [TBL] [Abstract][Full Text] [Related]
12. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer. Badali D; Gradinaru CC J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537 [TBL] [Abstract][Full Text] [Related]
16. Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer. Rindermann JJ; Akhtman Y; Richardson J; Brown T; Lagoudakis PG J Am Chem Soc; 2011 Jan; 133(2):279-85. PubMed ID: 21155557 [TBL] [Abstract][Full Text] [Related]
17. Fluorescent resonant energy transfer: correlated fluctuations of donor and acceptor. Yu ZG J Chem Phys; 2007 Dec; 127(22):221101. PubMed ID: 18081378 [TBL] [Abstract][Full Text] [Related]
18. Theory of photon statistics in single-molecule Förster resonance energy transfer. Gopich I; Szabo A J Chem Phys; 2005 Jan; 122(1):14707. PubMed ID: 15638691 [TBL] [Abstract][Full Text] [Related]
19. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer. Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. Doose S; Neuweiler H; Sauer M Chemphyschem; 2009 Jul; 10(9-10):1389-98. PubMed ID: 19475638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]