These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23719204)

  • 21. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.
    Block H; Celnik P
    Cerebellum; 2013 Dec; 12(6):781-93. PubMed ID: 23625383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different Error Size During Locomotor Adaptation Affects Transfer to Overground Walking Poststroke.
    Alcântara CC; Charalambous CC; Morton SM; Russo TL; Reisman DS
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1020-1030. PubMed ID: 30409103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interlimb Transfer of Reach Adaptation Does Not Require an Intact Corpus Callosum: Evidence from Patients with Callosal Lesions and Agenesis.
    Tilsley PA; Romaiguère P; Tramoni E; Felician O; Sarlegna FR
    eNeuro; 2021; 8(4):. PubMed ID: 33632816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The extent of interlimb transfer following adaptation to a novel visuomotor condition does not depend on awareness of the condition.
    Wang J; Joshi M; Lei Y
    J Neurophysiol; 2011 Jul; 106(1):259-64. PubMed ID: 21562196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct-effects and after-effects of dynamic adaptation on intralimb and interlimb transfer.
    Lei Y; Akbar A; Wang J
    Hum Mov Sci; 2019 Jun; 65():. PubMed ID: 29866428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 24-h savings of adaptation to novel movement dynamics initially reflects the recall of previous performance.
    Nguyen KP; Zhou W; McKenna E; Colucci-Chang K; Bray LCJ; Hosseini EA; Alhussein L; Rezazad M; Joiner WM
    J Neurophysiol; 2019 Sep; 122(3):933-946. PubMed ID: 31291156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aging reduces asymmetries in interlimb transfer of visuomotor adaptation.
    Wang J; Przybyla A; Wuebbenhorst K; Haaland KY; Sainburg RL
    Exp Brain Res; 2011 Apr; 210(2):283-90. PubMed ID: 21424842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.
    Carroll TJ; de Rugy A; Howard IS; Ingram JN; Wolpert DM
    J Neurophysiol; 2016 Jan; 115(1):445-56. PubMed ID: 26581867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes.
    Stöckel T; Carroll TJ; Summers JJ; Hinder MR
    J Neurophysiol; 2016 Aug; 116(2):575-86. PubMed ID: 27169508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements despite the awareness of the visuomotor perturbation.
    Javidialsaadi M; Wang J
    Brain Cogn; 2021 Feb; 147():105653. PubMed ID: 33221664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm?
    Kluzik J; Diedrichsen J; Shadmehr R; Bastian AJ
    J Neurophysiol; 2008 Sep; 100(3):1455-64. PubMed ID: 18596187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interference between competing motor memories developed through learning with different limbs.
    Kumar N; Kumar A; Sonane B; Mutha PK
    J Neurophysiol; 2018 Sep; 120(3):1061-1073. PubMed ID: 29790834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intermanual transfer characteristics of dynamic learning: direction, coordinate frame, and consolidation of interlimb generalization.
    Stockinger C; Thürer B; Focke A; Stein T
    J Neurophysiol; 2015 Dec; 114(6):3166-76. PubMed ID: 26424581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.
    Joiner WM; Ajayi O; Sing GC; Smith MA
    J Neurophysiol; 2011 Jan; 105(1):45-59. PubMed ID: 20881197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms underlying interlimb transfer of visuomotor rotations.
    Wang J; Sainburg RL
    Exp Brain Res; 2003 Apr; 149(4):520-6. PubMed ID: 12677333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perturbation schedule does not alter retention of a locomotor adaptation across days.
    Hussain SJ; Morton SM
    J Neurophysiol; 2014 Jun; 111(12):2414-22. PubMed ID: 24647433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interlimb differences in visuomotor and dynamic adaptation during targeted reaching in children.
    Bagesteiro LB; Lima KO; Wang J
    Hum Mov Sci; 2021 Jun; 77():102788. PubMed ID: 33798930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load?
    Malfait N; Ostry DJ
    J Neurosci; 2004 Sep; 24(37):8084-9. PubMed ID: 15371509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different adaptation rates to abrupt and gradual changes in environmental dynamics.
    Milner TE; Firouzimehr Z; Babadi S; Ostry DJ
    Exp Brain Res; 2018 Nov; 236(11):2923-2933. PubMed ID: 30076427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.