These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23719229)

  • 1. Application of 2D BN/SDS-PAGE coupled with mass spectrometry for identification of VDAC-associated protein complexes related to mitochondrial binding sites for type I brain hexokinase.
    Crepaldi CR; Vitale PA; Tesch AC; Laure HJ; Rosa JC; de Cerqueira César M
    Mitochondrion; 2013 Nov; 13(6):823-30. PubMed ID: 23719229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria.
    Poleti MD; Tesch AC; Crepaldi CR; Souza GH; Eberlin MN; de Cerqueira César M
    J Mol Neurosci; 2010 May; 41(1):48-54. PubMed ID: 19688190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homophilic anchorage of brain-hexokinase to mitochondria-porins revealed by specific-peptide antibody cross recognition.
    Oudard S; Miccoli L; Beurdeley-Thomas A; Dutrillaux B; Poupon MF
    Bull Cancer; 2004 Jun; 91(6):E184-200. PubMed ID: 15562563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain.
    Cesar Mde C; Wilson JE
    Arch Biochem Biophys; 2004 Feb; 422(2):191-6. PubMed ID: 14759607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacing hexokinase from mitochondrial voltage-dependent anion channel impairs GLT-1-mediated glutamate uptake but does not disrupt interactions between GLT-1 and mitochondrial proteins.
    Jackson JG; O'Donnell JC; Krizman E; Robinson MB
    J Neurosci Res; 2015 Jul; 93(7):999-1008. PubMed ID: 25546576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin.
    Perevoshchikova IV; Zorov SD; Kotova EA; Zorov DB; Antonenko YN
    FEBS Lett; 2010 Jun; 584(11):2397-402. PubMed ID: 20412805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VDAC electronics: 5. Mechanism and computational model of hexokinase-dependent generation of the outer membrane potential in brain mitochondria.
    Lemeshko VV
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2599-2607. PubMed ID: 30291922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride.
    Müller G; Korndörfer A; Kornak U; Malaisse WJ
    Arch Biochem Biophys; 1994 Jan; 308(1):8-23. PubMed ID: 8311478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP produced by oxidative phosphorylation is channeled toward hexokinase bound to mitochondrial porin (VDAC) in beetroots (Beta vulgaris).
    Alcántar-Aguirre FC; Chagolla A; Tiessen A; Délano JP; González de la Vara LE
    Planta; 2013 Jun; 237(6):1571-83. PubMed ID: 23503782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexokinase-binding properties of the mitochondrial VDAC protein: inhibition by DCCD and location of putative DCCD-binding sites.
    Nakashima RA
    J Bioenerg Biomembr; 1989 Aug; 21(4):461-70. PubMed ID: 2478532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Hexokinase and VDAC in Neurological Disorders.
    Rosa JC; César MC
    Curr Mol Pharmacol; 2016; 9(4):320-331. PubMed ID: 26758954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies on the role of phospholipids in determining the characteristics of mitochondrial binding sites for type I hexokinase.
    Hutny J; Wilson JE
    Acta Biochim Pol; 2000; 47(4):1045-60. PubMed ID: 11996095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The supramolecular assemblies of voltage-dependent anion channels in the native membrane.
    Hoogenboom BW; Suda K; Engel A; Fotiadis D
    J Mol Biol; 2007 Jul; 370(2):246-55. PubMed ID: 17524423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characteristics of hexokinase bound to the type a and type B sites of bovine brain mitochondria.
    de Cerqueira Cesar M; Wilson JE
    Arch Biochem Biophys; 2002 Jan; 397(1):106-12. PubMed ID: 11747316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of the hexokinase-VDAC complex for tumor therapy.
    Galluzzi L; Kepp O; Tajeddine N; Kroemer G
    Oncogene; 2008 Aug; 27(34):4633-5. PubMed ID: 18469866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The voltage dependent anion channel affects mitochondrial cholesterol distribution and function.
    Campbell AM; Chan SH
    Arch Biochem Biophys; 2007 Oct; 466(2):203-10. PubMed ID: 17662230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death.
    Azoulay-Zohar H; Israelson A; Abu-Hamad S; Shoshan-Barmatz V
    Biochem J; 2004 Jan; 377(Pt 2):347-55. PubMed ID: 14561215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE.
    Reifschneider NH; Goto S; Nakamoto H; Takahashi R; Sugawa M; Dencher NA; Krause F
    J Proteome Res; 2006 May; 5(5):1117-32. PubMed ID: 16674101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy.
    Krasnov GS; Dmitriev AA; Lakunina VA; Kirpiy AA; Kudryavtseva AV
    Expert Opin Ther Targets; 2013 Oct; 17(10):1221-33. PubMed ID: 23984984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a mitochondrial-binding site on the N-terminal end of hexokinase II.
    Bryan N; Raisch KP
    Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.