BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2371923)

  • 41. Stress-induced potentiation of morphine-induced analgesia in morphine-tolerant rats.
    Fleetwood SW; Holtzman SG
    Neuropharmacology; 1989 Jun; 28(6):563-7. PubMed ID: 2569174
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A selective role for brain histamine in prolactin release induced by opiates.
    Netti C; Guidobono F; Sibilia V; Pagani F; Villa I; Pecile A
    Agents Actions; 1990 Apr; 30(1-2):223-5. PubMed ID: 2142564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid micro-agonists in an antinociception assay.
    Sterious SN; Walker EA
    J Pharmacol Exp Ther; 2003 Jan; 304(1):301-9. PubMed ID: 12490605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. μ-Opioid and N-methyl-D-aspartate receptors in the amygdala contribute to minocycline-induced potentiation of morphine analgesia in rats.
    Ghazvini H; Rezayof A; Ghasemzadeh Z; Zarrindast MR
    Behav Pharmacol; 2015 Jun; 26(4):383-92. PubMed ID: 25563202
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat.
    Fürst S; Riba P; Friedmann T; Tímar J; Al-Khrasani M; Obara I; Makuch W; Spetea M; Schütz J; Przewlocki R; Przewlocka B; Schmidhammer H
    J Pharmacol Exp Ther; 2005 Feb; 312(2):609-18. PubMed ID: 15383636
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Opioid receptors mediating antinociception from beta-endorphin and morphine in the periaqueductal gray.
    Smith DJ; Robertson B; Monroe PJ; Taylor DA; Leedham JA; Cabral JD
    Neuropharmacology; 1992 Nov; 31(11):1137-50. PubMed ID: 1335557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The contribution of the rostral ventromedial medulla to the antinociceptive effects of systemic morphine in restrained and unrestrained rats.
    Mitchell JM; Lowe D; Fields HL
    Neuroscience; 1998 Nov; 87(1):123-33. PubMed ID: 9722146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacological profile of the potentiation of opioid analgesia by restraint stress.
    Calcagnetti DJ; Fleetwood SW; Holtzman SG
    Pharmacol Biochem Behav; 1990 Sep; 37(1):193-9. PubMed ID: 2175919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A study of the analgesic interaction between intrathecal morphine and subcutaneous nalbuphine in the rat.
    Loomis CW; Penning J; Milne B
    Anesthesiology; 1989 Nov; 71(5):704-10. PubMed ID: 2817464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats.
    Gmerek DE; Cowan A; Woods JH
    J Pharmacol Exp Ther; 1986 Jan; 236(1):8-13. PubMed ID: 3941402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of morphine-induced locomotor activity by pertussis toxin: biochemical and behavioral studies in mice.
    Funada M; Suzuki T; Narita M; Misawa M; Nagase H
    Brain Res; 1993 Aug; 619(1-2):163-72. PubMed ID: 8374774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An antisense oligodeoxynucleotide to mu-opioid receptors inhibits mu-opioid receptor agonist-induced analgesia in rats.
    Chen XH; Adams JU; Geller EB; DeRiel JK; Adler MW; Liu-Chen LY
    Eur J Pharmacol; 1995 Feb; 275(1):105-8. PubMed ID: 7774656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Involvement of brain histamine in basal and stress-induced release of prolactin in the rat.
    Netti C; Guidobono F; Sibilia V; Villa I; Cazzamalli E; Pecile A
    Agents Actions; 1987 Apr; 20(3-4):236-8. PubMed ID: 3604804
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of histamine receptor antagonists injected intrathecally on antinociception induced by opioids administered intracerebroventricularly in the mouse.
    Suh HW; Chung KM; Kim YH; Huh SO; Song DK
    Neuropeptides; 1999 Apr; 33(2):121-9. PubMed ID: 10657481
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of spinal mu opioid receptors in the development of morphine tolerance and dependence.
    DeLander GE; Portoghese PS; Takemori AE
    J Pharmacol Exp Ther; 1984 Oct; 231(1):91-6. PubMed ID: 6092607
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hepatobiliary effects of morphine are mediated in the brain.
    Hurwitz A; Looney G; Sullins M; Ben-Zvi Z
    Hepatology; 1990 Dec; 12(6):1406-12. PubMed ID: 2175293
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential role of the opioid mu and delta receptors in the activation of prolactin (PRL) and growth hormone (GH) secretion by morphine in the male rat.
    Koenig JI; Mayfield MA; McCann SM; Krulich L
    Life Sci; 1984 May; 34(19):1829-37. PubMed ID: 6330479
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Involvement of spinal kappa opioid receptors in a type of footshock induced analgesia in mice.
    Menendez L; Andres-Trelles F; Hidalgo A; Baamonde A
    Brain Res; 1993 May; 611(2):264-71. PubMed ID: 8392894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A single restraint stress exposure potentiates analgesia induced by intrathecally administered DAGO.
    Calcagnetti DJ; Stafinsky JL; Crisp T
    Brain Res; 1992 Oct; 592(1-2):305-9. PubMed ID: 1450919
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Acute exposure to saccharin reduces morphine analgesia in the the rat: evidence for involvement of N-methyl-D-aspartate and peripheral opioid receptors.
    McNally GP; Westbrook RF
    Psychopharmacology (Berl); 2000 Mar; 149(1):56-62. PubMed ID: 10789883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.