These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23719340)

  • 1. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.
    Joshi D; Kumar D; Maini AK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():446-56. PubMed ID: 23719340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential detection of a surrogate biological threat agent (Bacillus globigii) with a portable surface plasmon resonance biosensor.
    Adducci BA; Gruszewski HA; Khatibi PA; Schmale DG
    Biosens Bioelectron; 2016 Apr; 78():160-166. PubMed ID: 26606307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements.
    Sivaprakasam V; Lin HB; Huston AL; Eversole JD
    Opt Express; 2011 Mar; 19(7):6191-208. PubMed ID: 21451645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid detection methods for Bacillus anthracis in environmental samples: a review.
    Irenge LM; Gala JL
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1411-22. PubMed ID: 22262227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents - review.
    Pohanka M; Skládal P
    Folia Microbiol (Praha); 2009; 54(4):263-72. PubMed ID: 19826916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus anthracis as a biological warfare agent: infection, diagnosis and countermeasures.
    Pohanka M
    Bratisl Lek Listy; 2020; 121(3):175-181. PubMed ID: 32115973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technological advancements for the detection of and protection against biological and chemical warfare agents.
    Eubanks LM; Dickerson TJ; Janda KD
    Chem Soc Rev; 2007 Mar; 36(3):458-70. PubMed ID: 17325785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of growth media and washing on the spectral signatures of aerosolized biological simulants.
    Laflamme C; Simard JR; Buteau S; Lahaie P; Nadeau D; Déry B; Houle O; Mathieu P; Roy G; Ho J; Duchaine C
    Appl Opt; 2011 Feb; 50(6):788-96. PubMed ID: 21343956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Present status and prospects for the detection of Bacillus anthracis--a review].
    Liu J; Xu J; Chen W
    Wei Sheng Wu Xue Bao; 2012 Jul; 52(7):809-15. PubMed ID: 23115964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-channel mobile fluorescence lidar system for detection of tryptophan.
    Chen S; Chen Y; Zhang Y; Guo P; Wu H; Li X; Chen H
    Appl Opt; 2020 Jan; 59(3):607-613. PubMed ID: 32225184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. My life with LIF: a personal account of developing laser-induced fluorescence.
    Zare RN
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():1-14. PubMed ID: 22149473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of molecular beacons and multi-allelic real-time PCR for detection of and discrimination between virulent Bacillus anthracis and other Bacillus isolates.
    Hadjinicolaou AV; Demetriou VL; Hezka J; Beyer W; Hadfield TL; Kostrikis LG
    J Microbiol Methods; 2009 Jul; 78(1):45-53. PubMed ID: 19379778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in the development of next-generation anthrax vaccines.
    Friedlander AM; Little SF
    Vaccine; 2009 Nov; 27 Suppl 4():D28-32. PubMed ID: 19837282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthrax: clinical features, pathogenesis, and potential biological warfare threat.
    Friedlander AM
    Curr Clin Top Infect Dis; 2000; 20():335-49. PubMed ID: 10943532
    [No Abstract]   [Full Text] [Related]  

  • 15. Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm.
    Wang C; Pan YL; James D; Wetmore AE; Redding B
    Anal Chim Acta; 2014 Apr; 820():119-32. PubMed ID: 24745745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A miniature biochip system for detection of aerosolized Bacillus globigii spores.
    Stratis-Cullum DN; Griffin GD; Mobley J; Vass AA; Vo-Dinh T
    Anal Chem; 2003 Jan; 75(2):275-80. PubMed ID: 12553762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection technologies for Bacillus anthracis: prospects and challenges.
    Rao SS; Mohan KV; Atreya CD
    J Microbiol Methods; 2010 Jul; 82(1):1-10. PubMed ID: 20399814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa.
    Saito Y; Takano K; Kobayashi F; Kobayashi K; Park HD
    Appl Opt; 2014 Oct; 53(30):7030-6. PubMed ID: 25402791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bacteriolytic agent that detects and kills Bacillus anthracis.
    Schuch R; Nelson D; Fischetti VA
    Nature; 2002 Aug; 418(6900):884-9. PubMed ID: 12192412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standoff detection of biological agents using laser induced fluorescence-a comparison of 294 nm and 355 nm excitation wavelengths.
    Farsund O; Rustad G; Skogan G
    Biomed Opt Express; 2012 Nov; 3(11):2964-75. PubMed ID: 23162732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.