These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 23719578)

  • 1. Particle size and support effects in electrocatalysis.
    Hayden BE
    Acc Chem Res; 2013 Aug; 46(8):1858-66. PubMed ID: 23719578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The particle size dependence of the oxygen reduction reaction for carbon-supported platinum and palladium.
    Anastasopoulos A; Davies JC; Hannah L; Hayden BE; Lee CE; Milhano C; Mormiche C; Offin L
    ChemSusChem; 2013 Oct; 6(10):1973-82. PubMed ID: 24115683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of Pt particle size on the surface oxidation of titania supported platinum.
    Hayden BE; Pletcher D; Suchsland JP; Williams LJ
    Phys Chem Chem Phys; 2009 Mar; 11(10):1564-70. PubMed ID: 19240933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combinatorial approach to the study of particle size effects on supported electrocatalysts: oxygen reduction on gold.
    Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP
    J Comb Chem; 2006; 8(5):679-86. PubMed ID: 16961406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of support and particle size on the platinum catalysed oxygen reduction reaction.
    Hayden BE; Pletcher D; Suchsland JP; Williams LJ
    Phys Chem Chem Phys; 2009 Oct; 11(40):9141-8. PubMed ID: 19812834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial electrochemical screening of fuel cell electrocatalysts.
    Guerin S; Hayden BE; Lee CE; Mormiche C; Owen JR; Russell AE; Theobald B; Thompsett D
    J Comb Chem; 2004; 6(1):149-58. PubMed ID: 14714999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts.
    Bergamaski K; Pinheiro AL; Teixeira-Neto E; Nart FC
    J Phys Chem B; 2006 Oct; 110(39):19271-9. PubMed ID: 17004779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial approach to the study of particle size effects in electrocatalysis: synthesis of supported gold nanoparticles.
    Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP; Williams LJ
    J Comb Chem; 2006; 8(5):791-8. PubMed ID: 16961416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomically precise gold nanoclusters as new model catalysts.
    Li G; Jin R
    Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-atom catalysts: a new frontier in heterogeneous catalysis.
    Yang XF; Wang A; Qiao B; Li J; Liu J; Zhang T
    Acc Chem Res; 2013 Aug; 46(8):1740-8. PubMed ID: 23815772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution.
    Arrii S; Morfin F; Renouprez AJ; Rousset JL
    J Am Chem Soc; 2004 Feb; 126(4):1199-205. PubMed ID: 14746491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition.
    Hutchings GJ; Kiely CJ
    Acc Chem Res; 2013 Aug; 46(8):1759-72. PubMed ID: 23586905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A distinct atomic structure-catalytic activity relationship in 3-10 nm supported Au particles.
    Petkov V; Ren Y; Shan S; Luo J; Zhong CJ
    Nanoscale; 2014 Jan; 6(1):532-8. PubMed ID: 24232747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold atoms stabilized on various supports catalyze the water-gas shift reaction.
    Flytzani-Stephanopoulos M
    Acc Chem Res; 2014 Mar; 47(3):783-92. PubMed ID: 24266870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism.
    Abad A; Corma A; García H
    Chemistry; 2008; 14(1):212-22. PubMed ID: 18038385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.