These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23719649)

  • 21. Bimetallic NiCo functional graphene: an efficient catalyst for hydrogen-storage properties of MgH₂.
    Wang Y; Liu G; An C; Li L; Qiu F; Wang Y; Jiao L; Yuan H
    Chem Asian J; 2014 Sep; 9(9):2576-83. PubMed ID: 25044774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Na3FeF6 catalyst on the hydrogen storage properties of MgH2.
    Sulaiman NN; Mustafa NS; Ismail M
    Dalton Trans; 2016 Apr; 45(16):7085-93. PubMed ID: 27005483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles.
    Xu J; Yu X; Zou Z; Li Z; Wu Z; Akins DL; Yang H
    Chem Commun (Camb); 2008 Nov; (44):5740-2. PubMed ID: 19009066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic alteration of the 6Mg(NH
    Cao H; Zhang W; Pistidda C; Puszkiel J; Milanese C; Santoru A; Karimi F; Castro Riglos MV; Gizer G; Welter E; Bednarcik J; Etter M; Chen P; Klassen T; Dornheim M
    Phys Chem Chem Phys; 2017 Dec; 19(47):32105-32115. PubMed ID: 29182181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel catalytic effects of fullerene for LiBH4 hydrogen uptake and release.
    Wellons MS; Berseth PA; Zidan R
    Nanotechnology; 2009 May; 20(20):204022. PubMed ID: 19420670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.
    Huang X; Xiao X; Shao J; Zhai B; Fan X; Cheng C; Li S; Ge H; Wang Q; Chen L
    Nanoscale; 2016 Aug; 8(31):14898-908. PubMed ID: 27464228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-walled carbon nanotubes/lithium borohydride composites for hydrogen storage: role of
    Vellingiri L; Annamalai K; Kandasamy R; Kombiah I
    RSC Adv; 2019 Oct; 9(54):31483-31496. PubMed ID: 35527925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation on LiBH
    Li Y; Li P; Qu X
    Sci Rep; 2017 Jan; 7():41754. PubMed ID: 28139740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cobalt-catalyzed hydrogen desorption from the LiNH2-LiBH4 system.
    Tang WS; Wu G; Liu T; Wee AT; Yong CK; Xiong Z; Hor AT; Chen P
    Dalton Trans; 2008 May; (18):2395-9. PubMed ID: 18461193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Unique Double-Layered Carbon Nanobowl-Confined Lithium Borohydride for Highly Reversible Hydrogen Storage.
    Wu R; Zhang X; Liu Y; Zhang L; Hu J; Gao M; Pan H
    Small; 2020 Aug; 16(32):e2001963. PubMed ID: 32613757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal stability of Li2B12H12 and its role in the decomposition of LiBH4.
    Pitt MP; Paskevicius M; Brown DH; Sheppard DA; Buckley CE
    J Am Chem Soc; 2013 May; 135(18):6930-41. PubMed ID: 23581497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dual borohydride (Li and Na borohydride) catalyst/additive together with intermetallic FeTi for the optimization of the hydrogen sorption characteristics of Mg(NH
    Shukla V; Bhatnagar A; Singh S; Soni PK; Verma SK; Yadav TP; Shaz MA; Srivastava ON
    Dalton Trans; 2019 Aug; 48(30):11391-11403. PubMed ID: 31282909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NbN nanoparticles as additive for the high dehydrogenation properties of LiAlH4.
    Li L; Xu Y; Wang Y; Wang Y; Qiu F; An C; Jiao L; Yuan H
    Dalton Trans; 2014 Jan; 43(4):1806-13. PubMed ID: 24248480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible, Water-Resistant and Air-Stable LiBH
    Fan Y; Chen D; Yuan Z; Chen Q; Fan G; Zhao D; Liu B
    Front Chem; 2020; 8():45. PubMed ID: 32117873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation between structural stability of LiBH
    Cai W; Yang Y; Tao P; Ouyang L; Wang H
    Dalton Trans; 2018 Apr; 47(14):4987-4993. PubMed ID: 29557472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved hydrogen release from LiB0.33N0.67H2.67 with noble metal additions.
    Pinkerton FE; Meyer MS; Meisner GP; Balogh MP
    J Phys Chem B; 2006 Apr; 110(15):7967-74. PubMed ID: 16610895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Iron to Copper: The Effect of Transition Metal Catalysts on the Hydrogen Storage Properties of Nanoconfined LiBH
    Martínez AA; Gasnier A; Gennari FC
    Molecules; 2022 May; 27(9):. PubMed ID: 35566272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dehydrogenation Properties and Catalytic Mechanism of the K
    Mustafa NS; Yahya MS; Sazelee N; Ali NA; Ismail M
    ACS Omega; 2018 Dec; 3(12):17100-17107. PubMed ID: 31458330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition.
    Ngene P; van Zwienen MR; de Jongh PE
    Chem Commun (Camb); 2010 Nov; 46(43):8201-3. PubMed ID: 20871935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microstructural characterization of dehydrogenated products of the LiBH4-YH3 composite.
    Kim JW; Kim KB; Shim JH; Cho YW; Oh KH
    Microsc Microanal; 2014 Dec; 20(6):1798-804. PubMed ID: 25347999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.