These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23719743)

  • 1. Numerical and analytical study of an atherosclerosis inflammatory disease model.
    Hidalgo A; Tello L; Toro EF
    J Math Biol; 2014 Jun; 68(7):1785-814. PubMed ID: 23719743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcation and dynamics in a mathematical model of early atherosclerosis: How acute inflammation drives lesion development.
    Chalmers AD; Cohen A; Bursill CA; Myerscough MR
    J Math Biol; 2015 Dec; 71(6-7):1451-80. PubMed ID: 25732771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of atherogenesis as an inflammatory response.
    Ibragimov AI; McNeal CJ; Ritter LR; Walton JR
    Math Med Biol; 2005 Dec; 22(4):305-33. PubMed ID: 16162594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A procedure to construct exact solutions of nonlinear fractional differential equations.
    Güner Ö; Cevikel AC
    ScientificWorldJournal; 2014; 2014():489495. PubMed ID: 24737972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Dynamics, Birth-Jump Processes, and Sharp Traveling Waves.
    Rodríguez N; Malanson G
    Bull Math Biol; 2018 Jun; 80(6):1655-1687. PubMed ID: 29748838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical and computational techniques to deduce complex biochemical reaction mechanisms.
    Crampin EJ; Schnell S; McSharry PE
    Prog Biophys Mol Biol; 2004 Sep; 86(1):77-112. PubMed ID: 15261526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of atherosclerosis as an inflammatory disease.
    El Khatib N; Génieys S; Kazmierczak B; Volpert V
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4877-86. PubMed ID: 19884184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response.
    Ougrinovskaia A; Thompson RS; Myerscough MR
    Bull Math Biol; 2010 Aug; 72(6):1534-61. PubMed ID: 20440571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model and its fast numerical method for the tumor growth.
    Lee HG; Kim Y; Kim J
    Math Biosci Eng; 2015 Dec; 12(6):1173-87. PubMed ID: 26775855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas.
    Gholami A; Mang A; Biros G
    J Math Biol; 2016 Jan; 72(1-2):409-33. PubMed ID: 25963601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary conditions for surface reactions in lattice Boltzmann simulations.
    Gillissen JJ; Looije N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063307. PubMed ID: 25019912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.
    Macías-Díaz JE; Macías S; Medina-Ramírez IE
    Comput Biol Chem; 2013 Dec; 47():24-30. PubMed ID: 23850847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element approximation of a population spatial adaptation model.
    Galiano G; Velasco J
    Math Biosci Eng; 2013 Jun; 10(3):637-47. PubMed ID: 23906141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient time-domain simulation of nonlinear, state-space, transmission-line models of the cochlea (L).
    Pan S; Elliott SJ; Teal PD; Lineton B
    J Acoust Soc Am; 2015 Jun; 137(6):3559-62. PubMed ID: 26093443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Spatial Heterogeneity Affects Transient Behavior in Reaction-Diffusion Systems for Ecological Interactions?
    Wang X; Efendiev M; Lutscher F
    Bull Math Biol; 2019 Oct; 81(10):3889-3917. PubMed ID: 31444675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core solutions of rigidly rotating spiral waves in highly excitable media.
    Cai MC; Pan JT; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022920. PubMed ID: 25353558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Existence of solutions and numerical approximation of a non-local tumor growth model.
    Maddalena L; Ragni S
    Math Med Biol; 2020 Feb; 37(1):58-82. PubMed ID: 30933283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Curvature, Growth, and Anisotropy on the Evolution of Turing Patterns on Growing Manifolds.
    Krause AL; Ellis MA; Van Gorder RA
    Bull Math Biol; 2019 Mar; 81(3):759-799. PubMed ID: 30511207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A non-linear analysis of Turing pattern formation.
    Chen Y; Buceta J
    PLoS One; 2019; 14(8):e0220994. PubMed ID: 31398237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical solutions for a model of tissue invasion and migration of tumour cells.
    Kolev M; Zubik-Kowal B
    Comput Math Methods Med; 2011; 2011():452320. PubMed ID: 21331265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.