These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23719900)

  • 1. Long-term density-dependent changes in habitat selection in red deer (Cervus elaphus).
    Pérez-Barbería FJ; Hooper RJ; Gordon IJ
    Oecologia; 2013 Nov; 173(3):837-47. PubMed ID: 23719900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-generational effects of habitat and density on life history in red deer.
    McLoughlin PD; Coulson T; Clutton-Brock T
    Ecology; 2008 Dec; 89(12):3317-26. PubMed ID: 19137939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herbivory and climate as drivers of woody plant growth: Do deer decrease the impacts of warming?
    Vuorinen KEM; Rao SJ; Hester AJ; Speed JDM
    Ecol Appl; 2020 Sep; 30(6):e02119. PubMed ID: 32160360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large herbivores in novel ecosystems - Habitat selection by red deer (Cervus elaphus) in a former brown-coal mining area.
    Müller A; Dahm M; Bøcher PK; Root-Bernstein M; Svenning JC
    PLoS One; 2017; 12(5):e0177431. PubMed ID: 28505192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal scales, trade-offs, and functional responses in red deer habitat selection.
    Godvik IM; Loe LE; Vik JO; Veiberg V; Langvatn R; Mysterud A
    Ecology; 2009 Mar; 90(3):699-710. PubMed ID: 19341140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human recreation affects spatio-temporal habitat use patterns in red deer (Cervus elaphus).
    Coppes J; Burghardt F; Hagen R; Suchant R; Braunisch V
    PLoS One; 2017; 12(5):e0175134. PubMed ID: 28467429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Displacement Effects of Conservation Grazing on Red Deer (Cervus elaphus) Spatial Behaviour.
    Weiss F; Michler FU; Gillich B; Tillmann J; Ciuti S; Heurich M; Rieger S
    Environ Manage; 2022 Nov; 70(5):763-779. PubMed ID: 35994055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lifetime reproductive success and density-dependent, multi-variable resource selection.
    McLoughlin PD; Boyce MS; Coulson T; Clutton-Brock T
    Proc Biol Sci; 2006 Jun; 273(1593):1449-54. PubMed ID: 16777736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of density, climate, and supplementary forage on body mass and pregnancy rates of female red deer in Spain.
    Rodriguez-Hidalgo P; Gortazar C; Tortosa FS; Rodriguez-Vigal C; Fierro Y; Vicente J
    Oecologia; 2010 Oct; 164(2):389-98. PubMed ID: 20508950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red deer stocks in the Highlands of Scotland.
    Clutton-Brock TH; Coulson T; Milner JM
    Nature; 2004 May; 429(6989):261-2. PubMed ID: 15152241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat and host factors associated with liver fluke (Fasciola hepatica) diagnoses in wild red deer (Cervus elaphus) in the Scottish Highlands.
    French AS; Zadoks RN; Skuce PJ; Mitchell G; Gordon-Gibbs DK; Taggart MA
    Parasit Vectors; 2019 Nov; 12(1):535. PubMed ID: 31718680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A piecewise linear modeling approach for testing competing theories of habitat selection: an example with mule deer in northern winter ranges.
    Manning JA; Garton EO
    Oecologia; 2013 Jul; 172(3):725-35. PubMed ID: 23203509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.
    Delgiudice GD; Fieberg JR; Sampson BA
    PLoS One; 2013; 8(6):e65368. PubMed ID: 23785421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of weather and density dependence on population dynamics of Alpine-dwelling red deer.
    Bonardi A; Corlatti L; Bragalanti N; Pedrotti L
    Integr Zool; 2017 Jan; 12(1):61-76. PubMed ID: 27616664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grazing by wild red deer can mitigate nutrient enrichment in protected semi-natural open habitats.
    Riesch F; Wichelhaus A; Tonn B; Meißner M; Rosenthal G; Isselstein J
    Oecologia; 2022 Jun; 199(2):471-485. PubMed ID: 35545720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity in Primary Productivity Influences Competitive Interactions between Red Deer and Alpine Chamois.
    Anderwald P; Haller RM; Filli F
    PLoS One; 2016; 11(1):e0146458. PubMed ID: 26824867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitor densities, habitat, and weather: effects on interspecific interactions between wild deer species.
    Ferretti F; Fattorini N
    Integr Zool; 2021 Sep; 16(5):670-684. PubMed ID: 32654371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colonization of the Scottish islands via long-distance Neolithic transport of red deer (Cervus elaphus).
    Stanton DW; Mulville JA; Bruford MW
    Proc Biol Sci; 2016 Apr; 283(1828):. PubMed ID: 27053752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying spatial habitat loss from hydrocarbon development through assessing habitat selection patterns of mule deer.
    Northrup JM; Anderson CR; Wittemyer G
    Glob Chang Biol; 2015 Nov; 21(11):3961-70. PubMed ID: 26264447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LiDAR reveals a preference for intermediate visibility by a forest-dwelling ungulate species.
    Zong X; Wang T; Skidmore AK; Heurich M
    J Anim Ecol; 2023 Jul; 92(7):1306-1319. PubMed ID: 36413028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.