These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23719927)

  • 61. Investigations in the use of mice exposed to mycotoxins as a model for growing pigs.
    Rotter BA; Rotter RG; Thompson BK; Trenholm HL
    J Toxicol Environ Health; 1992 Oct; 37(2):329-39. PubMed ID: 1404488
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.
    Radde BN; Alizadeh-Rad N; Price SM; Schultz DJ; Klinge CM
    J Cell Biochem; 2016 Nov; 117(11):2521-32. PubMed ID: 26990649
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Differential induction of apoptosis by type A and B trichothecenes in Jurkat T-lymphocytes.
    Nasri T; Bosch RR; Voorde St; Fink-Gremmels J
    Toxicol In Vitro; 2006 Sep; 20(6):832-40. PubMed ID: 16472964
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.
    Chowdhury SR; Djordjevic J; Albensi BC; Fernyhough P
    Biosci Rep; 2015 Dec; 36(1):e00286. PubMed ID: 26647379
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production.
    Jong CJ; Azuma J; Schaffer S
    Amino Acids; 2012 Jun; 42(6):2223-32. PubMed ID: 21691752
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation.
    Sansbury BE; Jones SP; Riggs DW; Darley-Usmar VM; Hill BG
    Chem Biol Interact; 2011 May; 191(1-3):288-95. PubMed ID: 21147079
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes.
    Vineetha VP; Soumya RS; Raghu KG
    Eur J Pharmacol; 2015 May; 754():162-72. PubMed ID: 25746422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phytotoxic effects of trichothecenes on the growth and morphology of Arabidopsis thaliana.
    Masuda D; Ishida M; Yamaguchi K; Yamaguchi I; Kimura M; Nishiuchi T
    J Exp Bot; 2007; 58(7):1617-26. PubMed ID: 17426057
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Trichothecene-induced hemolysis. I. The hemolytic activity of T-2 toxin.
    Segal R; Milo-Goldzweig I; Joffe AZ; Yagen B
    Toxicol Appl Pharmacol; 1983 Sep; 70(3):343-9. PubMed ID: 6636168
    [TBL] [Abstract][Full Text] [Related]  

  • 71. T-2 mycotoxin inhibits mitochondrial protein synthesis.
    Pace JG; Watts MR; Canterbury WJ
    Toxicon; 1988; 26(1):77-85. PubMed ID: 3347933
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In silico analysis sheds light on the structural basis underlying the ribotoxicity of trichothecenes-A tool for supporting the hazard identification process.
    Dellafiora L; Galaverna G; Dall'Asta C
    Toxicol Lett; 2017 Mar; 270():80-87. PubMed ID: 28216416
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A.
    Módis K; Panopoulos P; Coletta C; Papapetropoulos A; Szabo C
    Biochem Pharmacol; 2013 Nov; 86(9):1311-9. PubMed ID: 24012591
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Trichothecene mycotoxins inhibit mitochondrial translation--implication for the mechanism of toxicity.
    Bin-Umer MA; McLaughlin JE; Basu D; McCormick S; Tumer NE
    Toxins (Basel); 2011 Dec; 3(12):1484-501. PubMed ID: 22295173
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction.
    Wang S; Wu K; Xue D; Zhang C; Rajput SA; Qi D
    Food Chem Toxicol; 2021 Jul; 153():112214. PubMed ID: 33930483
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells.
    Dinu D; Bodea GO; Ceapa CD; Munteanu MC; Roming FI; Serban AI; Hermenean A; Costache M; Zarnescu O; Dinischiotu A
    Toxicon; 2011 Jun; 57(7-8):1023-32. PubMed ID: 21549142
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Toxicity data relevant for hazard characterization.
    Schlatter J
    Toxicol Lett; 2004 Oct; 153(1):83-9. PubMed ID: 15342084
    [TBL] [Abstract][Full Text] [Related]  

  • 78. ROS: Trichothecenes' handy weapon?
    Ren Z; He H; Zuo Z; Xu Z; Wei Z; Deng J
    Food Chem Toxicol; 2020 Aug; 142():111438. PubMed ID: 32442472
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Fusarium toxin deoxynivalenol disrupts phenotype and function of monocyte-derived dendritic cells in vivo and in vitro.
    Bimczok D; Döll S; Rau H; Goyarts T; Wundrack N; Naumann M; Dänicke S; Rothkötter HJ
    Immunobiology; 2007; 212(8):655-66. PubMed ID: 17869643
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.
    Schultze N; Wanka H; Zwicker P; Lindequist U; Haertel B
    Toxicology; 2017 Feb; 377():57-63. PubMed ID: 28013001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.