BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23720043)

  • 1. The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins.
    Chang WL; Chang CW; Chang YY; Sung HH; Lin MD; Chang SC; Chen CH; Huang CW; Tung KS; Chou TB
    Development; 2013 Jul; 140(13):2798-807. PubMed ID: 23720043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation.
    Han C; Belenkaya TY; Khodoun M; Tauchi M; Lin X; Lin X
    Development; 2004 Apr; 131(7):1563-75. PubMed ID: 14998928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas.
    Hameetman L; David G; Yavas A; White SJ; Taminiau AH; Cleton-Jansen AM; Hogendoorn PC; Bovée JV
    J Pathol; 2007 Mar; 211(4):399-409. PubMed ID: 17226760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.
    Dasgupta U; Dixit BL; Rusch M; Selleck S; The I
    Dev Genes Evol; 2007 Aug; 217(8):555-61. PubMed ID: 17610078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation.
    Busse M; Feta A; Presto J; Wilén M; Grønning M; Kjellén L; Kusche-Gullberg M
    J Biol Chem; 2007 Nov; 282(45):32802-10. PubMed ID: 17761672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exostosin-like 2 regulates FGF2 signaling by controlling the endocytosis of FGF2.
    Nadanaka S; Kitagawa H
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):791-799. PubMed ID: 29305908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways.
    Bornemann DJ; Duncan JE; Staatz W; Selleck S; Warrior R
    Development; 2004 May; 131(9):1927-38. PubMed ID: 15056609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic expression of the EXT2 gene in developing chondrocytes enhances the synthesis of heparan sulfate and bone formation in mice.
    Morimoto K; Shimizu T; Furukawa K; Morio H; Kurosawa H; Shirasawa T
    Biochem Biophys Res Commun; 2002 Apr; 292(4):999-1009. PubMed ID: 11944914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.
    Blanchette CR; Thackeray A; Perrat PN; Hekimi S; Bénard CY
    PLoS Genet; 2017 Jan; 13(1):e1006525. PubMed ID: 28068429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Ext1, Ext2, and heparanase genes in brain of senescence-accelerated OXYS rats in early ontogenesis and during development of neurodegenerative changes.
    Shevelev OB; Rykova VI; Fedoseeva LA; Leberfarb EY; Dymshits GM; Kolosova NG
    Biochemistry (Mosc); 2012 Jan; 77(1):56-61. PubMed ID: 22339633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of heparan sulfate in EXT1-deficient cells.
    Okada M; Nadanaka S; Shoji N; Tamura J; Kitagawa H
    Biochem J; 2010 May; 428(3):463-71. PubMed ID: 20377530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development.
    Norton WH; Ledin J; Grandel H; Neumann CJ
    Development; 2005 Nov; 132(22):4963-73. PubMed ID: 16221725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant heparan sulfate proteoglycan localization, despite normal exostosin, in central chondrosarcoma.
    Schrage YM; Hameetman L; Szuhai K; Cleton-Jansen AM; Taminiau AH; Hogendoorn PC; Bovée JV
    Am J Pathol; 2009 Mar; 174(3):979-88. PubMed ID: 19179614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila.
    Lin X; Perrimon N
    Matrix Biol; 2000 Aug; 19(4):303-7. PubMed ID: 10963990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of EXT1 and EXT2, hereditary multiple exostoses gene products, in Golgi apparatus.
    Kobayashi S; Morimoto K; Shimizu T; Takahashi M; Kurosawa H; Shirasawa T
    Biochem Biophys Res Commun; 2000 Feb; 268(3):860-7. PubMed ID: 10679296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Expression of EXTL2, a Member of the Exostosin (EXT) Family of Glycosyltransferases, in Human Embryonic Kidney 293 Cells Results in Longer Heparan Sulfate Chains.
    Katta K; Imran T; Busse-Wicher M; Grønning M; Czajkowski S; Kusche-Gullberg M
    J Biol Chem; 2015 May; 290(21):13168-77. PubMed ID: 25829497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EXTL2 controls liver regeneration and aortic calcification through xylose kinase-dependent regulation of glycosaminoglycan biosynthesis.
    Nadanaka S; Kitagawa H
    Matrix Biol; 2014 Apr; 35():18-24. PubMed ID: 24176719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau
    Stopschinski BE; Holmes BB; Miller GM; Manon VA; Vaquer-Alicea J; Prueitt WL; Hsieh-Wilson LC; Diamond MI
    J Biol Chem; 2018 Jul; 293(27):10826-10840. PubMed ID: 29752409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heparan sulfate polymerization in Drosophila.
    Izumikawa T; Egusa N; Taniguchi F; Sugahara K; Kitagawa H
    J Biol Chem; 2006 Jan; 281(4):1929-34. PubMed ID: 16303756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1-EXT2 interaction.
    Kim BT; Kitagawa H; Tanaka J; Tamura J; Sugahara K
    J Biol Chem; 2003 Oct; 278(43):41618-23. PubMed ID: 12907685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.