These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23720228)

  • 21. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer.
    Dominguez-Alfaro A; Gómez IJ; Alegret N; Mecerreyes D; Prato M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33573011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Comparative Study of Biomimetic Synthesis of EDOT-Pyrrole and EDOT-Aniline Copolymers by Peroxidase-like Catalysts: Towards Tunable Semiconductive Organic Materials.
    Martínez-Cartagena ME; Bernal-Martínez J; Banda-Villanueva A; Magaña I; Córdova T; Ledezma-Pérez A; Fernández-Tavizón S; Díaz de León R
    Front Chem; 2022; 10():915264. PubMed ID: 35844638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: the effect of functional groups and temperature in template-free electropolymerization.
    Luo SC; Sekine J; Zhu B; Zhao H; Nakao A; Yu HH
    ACS Nano; 2012 Apr; 6(4):3018-26. PubMed ID: 22424318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superhydrophobic aluminum alloy surfaces by a novel one-step process.
    Saleema N; Sarkar DK; Paynter RW; Chen XG
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2500-2. PubMed ID: 20812666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces.
    Lee EJ; Jung CH; Hwang IT; Choi JH; Cho SO; Nho YC
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2988-93. PubMed ID: 21776956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrodeposited polymer films with both superhydrophobicity and superoleophilicity.
    Darmanin T; Nicolas M; Guittard F
    Phys Chem Chem Phys; 2008 Aug; 10(29):4322-6. PubMed ID: 18633552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of functional polymer surfaces with controlled wettability.
    Anastasiadis SH
    Langmuir; 2013 Jul; 29(30):9277-90. PubMed ID: 23789943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical Polymerisation of N-Arylated and N-Alkylated EDOT-Substituted Pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) Derivatives: Influence of Substitution Pattern on Optical and Electronic Properties.
    Zhang K; Tieke B; Forgie JC; Skabara PJ
    Macromol Rapid Commun; 2009 Nov; 30(21):1834-40. PubMed ID: 21638462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EDOT-based conjugated polymers accessed
    Tan ZR; Xing YQ; Cheng JZ; Zhang G; Shen ZQ; Zhang YJ; Liao G; Chen L; Liu SY
    Chem Sci; 2022 Feb; 13(6):1725-1733. PubMed ID: 35282637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superhydrophobic conducting polymers based on hydrocarbon poly(3,4-ethylenedioxyselenophene).
    Dunand O; Darmanin T; Guittard F
    Chemphyschem; 2013 Sep; 14(13):2947-53. PubMed ID: 23893504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy.
    She Z; Li Q; Wang Z; Li L; Chen F; Zhou J
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4348-56. PubMed ID: 22845176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the possibility of superhydrophobic behavior for hydrophilic materials.
    Cui XS; Li W
    J Colloid Interface Sci; 2010 Jul; 347(1):156-62. PubMed ID: 20417521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrokinetics on superhydrophobic surfaces.
    Papadopoulos P; Deng X; Vollmer D; Butt HJ
    J Phys Condens Matter; 2012 Nov; 24(46):464110. PubMed ID: 23113983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combined etching process toward robust superhydrophobic SiC surfaces.
    Liu Y; Lin W; Lin Z; Xiu Y; Wong CP
    Nanotechnology; 2012 Jun; 23(25):255703. PubMed ID: 22652604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.
    Ensikat HJ; Mayser M; Barthlott W
    Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: nanocomposite formation, stability, and application in catalysis.
    Kumar SS; Kumar CS; Mathiyarasu J; Phani KL
    Langmuir; 2007 Mar; 23(6):3401-8. PubMed ID: 17284059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization.
    Nyström D; Lindqvist J; Ostmark E; Antoni P; Carlmark A; Hult A; Malmström E
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):816-23. PubMed ID: 20356007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.