BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 23720249)

  • 1. A virtual training system for maxillofacial surgery using advanced haptic feedback and immersive workbench.
    Wu F; Chen X; Lin Y; Wang C; Wang X; Shen G; Qin J; Heng PA
    Int J Med Robot; 2014 Mar; 10(1):78-87. PubMed ID: 23720249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prototype of simulation of orthognathic surgery using a virtual reality haptic device.
    Sohmura T; Hojo H; Nakajima M; Wakabayashi K; Nagao M; Iida S; Kitagawa T; Kogo M; Kojima T; Matsumura K; Nakamura T; Takahashi J
    Int J Oral Maxillofac Surg; 2004 Dec; 33(8):740-50. PubMed ID: 15556320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.
    Badiali G; Ferrari V; Cutolo F; Freschi C; Caramella D; Bianchi A; Marchetti C
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1970-6. PubMed ID: 25441867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work.
    Robiony M; Salvo I; Costa F; Zerman N; Bazzocchi M; Toso F; Bandera C; Filippi S; Felice M; Politi M
    J Oral Maxillofac Surg; 2007 Jun; 65(6):1198-208. PubMed ID: 17517306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.
    Feng Z; Zhao J; Zhou L; Dong Y; Zhao Y
    J Oral Maxillofac Surg; 2009 Oct; 67(10):2266-74. PubMed ID: 19761922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary study of virtual orthognathic surgical simulation and training.
    Yu H; Cheng J; Cheng AH; Shen SG
    J Craniofac Surg; 2011 Mar; 22(2):648-51. PubMed ID: 21403552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphic and haptic simulation system for virtual laparoscopic rectum surgery.
    Pan JJ; Chang J; Yang X; Zhang JJ; Qureshi T; Howell R; Hickish T
    Int J Med Robot; 2011 Sep; 7(3):304-17. PubMed ID: 21563287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of new soft tissue software in orthognathic surgery planning.
    Marchetti C; Bianchi A; Muyldermans L; Di Martino M; Lancellotti L; Sarti A
    Int J Oral Maxillofac Surg; 2011 Jan; 40(1):26-32. PubMed ID: 21030211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided trauma simulation system with haptic feedback is easy and fast for oral-maxillofacial surgeons to learn and use.
    Schvartzman SC; Silva R; Salisbury K; Gaudilliere D; Girod S
    J Oral Maxillofac Surg; 2014 Oct; 72(10):1984-93. PubMed ID: 25234531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.
    Xia J; Ip HH; Samman N; Wang D; Kot CS; Yeung RW; Tideman H
    Int J Oral Maxillofac Surg; 2000 Feb; 29(1):11-7. PubMed ID: 10691136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.
    Lemole GM; Banerjee PP; Luciano C; Neckrysh S; Charbel FT
    Neurosurgery; 2007 Jul; 61(1):142-8; discussion 148-9. PubMed ID: 17621029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a maxillofacial virtual surgical system based on biomechanical parameters of facial soft tissue.
    Cheng M; Zhuang Y; Zhao H; Li M; Fan L; Yu H
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1201-1211. PubMed ID: 35569066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an augmented reality tool for maxillary positioning in orthognathic surgery - a feasibility study.
    Mischkowski RA; Zinser MJ; Kübler AC; Krug B; Seifert U; Zöller JE
    J Craniomaxillofac Surg; 2006 Dec; 34(8):478-83. PubMed ID: 17157519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery.
    Xia J; Samman N; Yeung RW; Shen SG; Wang D; Ip HH; Tideman H
    Int J Adult Orthodon Orthognath Surg; 2000; 15(4):265-82. PubMed ID: 11307184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary study on mechanical characteristics of maxillofacial soft and hard tissues for virtual surgery.
    Zhuang Y; Chen J; Liu Q; Zou F; Lin Y; An Q; Yu H
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):151-160. PubMed ID: 33130999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical spatial hashing-based collision detection and hybrid collision response in a haptic surgery simulator.
    Li X; Gu L; Zhang S; Zhang J; Zheng G; Huang P; Xu J
    Int J Med Robot; 2008 Mar; 4(1):77-86. PubMed ID: 18273917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic rendering for VR laparoscopic surgery simulation.
    McColl R; Brown I; Seligman C; Lim F; Alsaraira A
    Australas Phys Eng Sci Med; 2006 Mar; 29(1):73-8. PubMed ID: 16623225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an integrated system for planning and assisting maxillofacial orthognathic surgery.
    Olszewski R; Villamil MB; Trevisan DG; Nedel LP; Freitas CM; Reychler H; Macq B
    Comput Methods Programs Biomed; 2008 Jul; 91(1):13-21. PubMed ID: 18417245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery.
    Polley JW; Figueroa AA
    J Oral Maxillofac Surg; 2013 May; 71(5):911-20. PubMed ID: 23312847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.