These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23720267)

  • 1. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy.
    Adams GR; Bamman MM
    Compr Physiol; 2012 Oct; 2(4):2829-70. PubMed ID: 23720267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does blood flow restriction enhance hypertrophic signaling in skeletal muscle?
    Meyer RA
    J Appl Physiol (1985); 2006 May; 100(5):1443-4. PubMed ID: 16614363
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading.
    Adams GR
    Exerc Sport Sci Rev; 1998; 26():31-60. PubMed ID: 9696984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy.
    von Walden F; Casagrande V; Östlund Farrants AK; Nader GA
    Am J Physiol Cell Physiol; 2012 May; 302(10):C1523-30. PubMed ID: 22403788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanotransduction pathways in skeletal muscle hypertrophy.
    Yamada AK; Verlengia R; Bueno Junior CR
    J Recept Signal Transduct Res; 2012 Feb; 32(1):42-4. PubMed ID: 22171534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hormonal influences on the muscle-bone feedback system: a perspective.
    Sievänen H
    J Musculoskelet Neuronal Interact; 2005; 5(3):255-61. PubMed ID: 16172516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(-/-) mouse.
    Spangenburg EE; Booth FW
    Cytokine; 2006 May; 34(3-4):125-30. PubMed ID: 16781162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of cyclic bending loading on in vivo skeletal tissue regeneration from periosteal origin.
    Moukoko D; Pourquier D; Pithioux M; Chabrand P
    Orthop Traumatol Surg Res; 2010 Dec; 96(8):833-9. PubMed ID: 21036687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is bone's response to mechanical signals dominated by gravitational loading?
    Judex S; Carlson KJ
    Med Sci Sports Exerc; 2009 Nov; 41(11):2037-43. PubMed ID: 19812513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional adaptations of the cardiovascular system by training.
    Huonker M; Halle M; Keul J
    Int J Sports Med; 1996 Nov; 17 Suppl 3():S164-72. PubMed ID: 9119538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β2 Adrenoceptor signaling-induced muscle hypertrophy from blood flow restriction: is there evidence?
    Loenneke JP; Wilson JM; Thiebaud RS; Abe T; Lowery RP; Bemben MG
    Horm Metab Res; 2012 Jun; 44(7):489-93. PubMed ID: 22638833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow restricted exercise and skeletal muscle health.
    Manini TM; Clark BC
    Exerc Sport Sci Rev; 2009 Apr; 37(2):78-85. PubMed ID: 19305199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary creatine monohydrate supplementation increases satellite cell mitotic activity during compensatory hypertrophy.
    Dangott B; Schultz E; Mozdziak PE
    Int J Sports Med; 2000 Jan; 21(1):13-6. PubMed ID: 10683092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [In vitro long-term culture of human bone under physiological load conditions].
    Boudriot U; Daume B; Brandt J
    Biomed Tech (Berl); 2004 Dec; 49(12):364-7. PubMed ID: 15655930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical signals and IGF-I gene splicing in vitro in relation to development of skeletal muscle.
    Cheema U; Brown R; Mudera V; Yang SY; McGrouther G; Goldspink G
    J Cell Physiol; 2005 Jan; 202(1):67-75. PubMed ID: 15389530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.
    Abe T; Loenneke JP; Fahs CA; Rossow LM; Thiebaud RS; Bemben MG
    Clin Physiol Funct Imaging; 2012 Jul; 32(4):247-52. PubMed ID: 22681600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the Structural Adaptations that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review.
    Jorgenson KW; Phillips SM; Hornberger TA
    Cells; 2020 Jul; 9(7):. PubMed ID: 32660165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise.
    Wackerhage H; Schoenfeld BJ; Hamilton DL; Lehti M; Hulmi JJ
    J Appl Physiol (1985); 2019 Jan; 126(1):30-43. PubMed ID: 30335577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.