These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23720267)

  • 21. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training.
    Abe T; Kearns CF; Sato Y
    J Appl Physiol (1985); 2006 May; 100(5):1460-6. PubMed ID: 16339340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of skeletal muscle hypertrophy in models of increased loading.
    Bodine SC; Baar K
    Methods Mol Biol; 2012; 798():213-29. PubMed ID: 22130839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of mechanical loading on the MyHC synthesis rate and composition in rat plantaris muscle.
    Pehme A; Alev K; Kaasik P; Julkunen A; Seene T
    Int J Sports Med; 2004 Jul; 25(5):332-8. PubMed ID: 15241711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication.
    Wall ME; Banes AJ
    J Musculoskelet Neuronal Interact; 2005 Mar; 5(1):70-84. PubMed ID: 15788873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process.
    West DW; Burd NA; Staples AW; Phillips SM
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1371-5. PubMed ID: 20541030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclosporin A modulates cellular localization of MEF2C protein and blocks fiber hypertrophy in the overloaded soleus muscle of mice.
    Sakuma K; Akiho M; Nakashima H; Nakao R; Hirata M; Inashima S; Yamaguchi A; Yasuhara M
    Acta Neuropathol; 2008 Jun; 115(6):663-74. PubMed ID: 18369646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disrupted autophagy undermines skeletal muscle adaptation and integrity.
    Jokl EJ; Blanco G
    Mamm Genome; 2016 Dec; 27(11-12):525-537. PubMed ID: 27484057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impaired overload-induced hypertrophy in obese Zucker rat slow-twitch skeletal muscle.
    Paturi S; Gutta AK; Kakarla SK; Katta A; Arnold EC; Wu M; Rice KM; Blough ER
    J Appl Physiol (1985); 2010 Jan; 108(1):7-13. PubMed ID: 19779156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeletal muscle injury versus adaptation with aging: novel insights on perplexing paradigms.
    Baker BA; Cutlip RG
    Exerc Sport Sci Rev; 2010 Jan; 38(1):10-6. PubMed ID: 20016294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of work-induced hypertrophy of skeletal muscle.
    Goldberg AL; Etlinger JD; Goldspink DF; Jablecki C
    Med Sci Sports; 1975; 7(3):185-98. PubMed ID: 128681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical signal transduction in skeletal muscle growth and adaptation.
    Tidball JG
    J Appl Physiol (1985); 2005 May; 98(5):1900-8. PubMed ID: 15829723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comments on Point:Counterpoint: IGF is/is not the major physiological regulator of muscle mass. IGF-1 is a major regulator of muscle mass during growth but not for adult myofiber hypertrophy.
    Shavlakadze T; Grounds MD
    J Appl Physiol (1985); 2010 Jun; 108(6):1829. PubMed ID: 20527702
    [No Abstract]   [Full Text] [Related]  

  • 34. Comments on Point:Counterpoint: IGF is/is not the major physiological regulator of muscle mass. IGF-1 is a major regulator of muscle mass during growth but not for adult myofiber hypertrophy.
    Vinciguerra M; Hede M; Rosenthal N
    J Appl Physiol (1985); 2010 Jun; 108(6):1829-30. PubMed ID: 20527703
    [No Abstract]   [Full Text] [Related]  

  • 35. HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle.
    Milkiewicz M; Doyle JL; Fudalewski T; Ispanovic E; Aghasi M; Haas TL
    J Physiol; 2007 Sep; 583(Pt 2):753-66. PubMed ID: 17627993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. What makes vessels grow with exercise training?
    Prior BM; Yang HT; Terjung RL
    J Appl Physiol (1985); 2004 Sep; 97(3):1119-28. PubMed ID: 15333630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training.
    Yasuda T; Ogasawara R; Sakamaki M; Bemben MG; Abe T
    Clin Physiol Funct Imaging; 2011 Sep; 31(5):347-51. PubMed ID: 21771252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells.
    Batra NN; Li YJ; Yellowley CE; You L; Malone AM; Kim CH; Jacobs CR
    J Biomech; 2005 Sep; 38(9):1909-17. PubMed ID: 16023480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Compensatory adaptations of skeletal muscle composition to a long-term functional overload.
    Hubbard RW; Ianuzzo CD; Mathew WT; Linduska JD
    Growth; 1975 Mar; 39(1):85-93. PubMed ID: 1132777
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward a generalised tensegrity model describing the mechanical behaviour of the cytoskeleton structure.
    Wendling S; CaƱadas P; Chabrand P
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):45-52. PubMed ID: 12623437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.