These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23720528)

  • 1. Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics.
    Friedrich M
    Integr Comp Biol; 2013 Jul; 53(1):50-67. PubMed ID: 23720528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototransduction and clock gene expression in the troglobiont beetle Ptomaphagus hirtus of Mammoth cave.
    Friedrich M; Chen R; Daines B; Bao R; Caravas J; Rai PK; Zagmajster M; Peck SB
    J Exp Biol; 2011 Nov; 214(Pt 21):3532-41. PubMed ID: 21993781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavefishes.
    Borowsky R
    Curr Biol; 2018 Jan; 28(2):R60-R64. PubMed ID: 29374443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic Insights into the Loss of Vision in Molnár János Cave's Crustaceans.
    Pérez-Moreno JL; Balázs G; Bracken-Grissom HD
    Integr Comp Biol; 2018 Sep; 58(3):452-464. PubMed ID: 29931265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cave-adapted evolution in the North American amblyopsid fishes inferred using phylogenomics and geometric morphometrics.
    Hart PB; Niemiller ML; Burress ED; Armbruster JW; Ludt WB; Chakrabarty P
    Evolution; 2020 May; 74(5):936-949. PubMed ID: 32187649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression analyses of cave mollies (
    McGowan KL; Passow CN; Arias-Rodriguez L; Tobler M; Kelley JL
    Biol Lett; 2019 Oct; 15(10):20190554. PubMed ID: 31640527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Up high and down low: Molecular systematics and insight into the diversification of the ground beetle genus Rhadine LeConte.
    Gómez RA; Reddell J; Will K; Moore W
    Mol Phylogenet Evol; 2016 May; 98():161-75. PubMed ID: 26879711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme Adaptation in Caves.
    Soares D; Niemiller ML
    Anat Rec (Hoboken); 2020 Jan; 303(1):15-23. PubMed ID: 30537183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye?
    Remé CE; Wirz-Justice A; Terman M
    J Biol Rhythms; 1991; 6(1):5-29. PubMed ID: 1773080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fly's eye view of circadian entrainment.
    Ashmore LJ; Sehgal A
    J Biol Rhythms; 2003 Jun; 18(3):206-16. PubMed ID: 12828278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments.
    Beale AD; Whitmore D; Moran D
    J Comp Physiol B; 2016 Dec; 186(8):947-968. PubMed ID: 27263116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae).
    Niemiller ML; Fitzpatrick BM; Shah P; Schmitz L; Near TJ
    Evolution; 2013 Mar; 67(3):732-48. PubMed ID: 23461324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population genomics in two cave-obligate invertebrates confirms extremely limited dispersal between caves.
    Balogh A; Ngo L; Zigler KS; Dixon G
    Sci Rep; 2020 Oct; 10(1):17554. PubMed ID: 33067497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization.
    Calderoni L; Rota-Stabelli O; Frigato E; Panziera A; Kirchner S; Foulkes NS; Kruckenhauser L; Bertolucci C; Fuselli S
    Heredity (Edinb); 2016 Nov; 117(5):383-392. PubMed ID: 27485669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Out of sight out of mind: current knowledge of Chinese cave fishes.
    Zhao YH; Gozlan RE; Zhang CG
    J Fish Biol; 2011 Dec; 79(6):1545-62. PubMed ID: 22136239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced opsin gene expression in a cave-dwelling fish.
    Tobler M; Coleman SW; Perkins BD; Rosenthal GG
    Biol Lett; 2010 Feb; 6(1):98-101. PubMed ID: 19740890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of isolation on contrasting phylogeographic patterns in two cave crustaceans.
    Pérez-Moreno JL; Balázs G; Wilkins B; Herczeg G; Bracken-Grissom HD
    BMC Evol Biol; 2017 Dec; 17(1):247. PubMed ID: 29216829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment.
    Christman MC; Doctor DH; Niemiller ML; Weary DJ; Young JA; Zigler KS; Culver DC
    PLoS One; 2016; 11(8):e0160408. PubMed ID: 27532611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.
    Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN
    PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects.
    Bradshaw WE; Holzapfel CM
    J Biol Rhythms; 2010 Jun; 25(3):155-65. PubMed ID: 20484687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.