BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23720749)

  • 1. An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake.
    Sharma P; Wollenberg K; Sellers M; Zainabadi K; Galinsky K; Moss E; Nguitragool W; Neafsey D; Desai SA
    J Biol Chem; 2013 Jul; 288(27):19429-40. PubMed ID: 23720749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Antimalarial Compounds That Require CLAG3 for Their Uptake by
    Mira-Martínez S; Pickford AK; Rovira-Graells N; Guetens P; Tintó-Font E; Cortés A; Rosanas-Urgell A
    Antimicrob Agents Chemother; 2019 May; 63(5):. PubMed ID: 30782998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics of malaria parasite nutrient uptake, but why?
    Desai SA
    Trends Parasitol; 2022 Aug; 38(8):618-628. PubMed ID: 35641406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex nutrient channel phenotypes despite Mendelian inheritance in a Plasmodium falciparum genetic cross.
    Gupta A; Bokhari AAB; Pillai AD; Crater AK; Gezelle J; Saggu G; Nasamu AS; Ganesan SM; Niles JC; Desai SA
    PLoS Pathog; 2020 Feb; 16(2):e1008363. PubMed ID: 32069335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the plasmodial surface anion channel reduce leupeptin uptake and can confer drug resistance in Plasmodium falciparum-infected erythrocytes.
    Lisk G; Pain M; Gluzman IY; Kambhampati S; Furuya T; Su XZ; Fay MP; Goldberg DE; Desai SA
    Antimicrob Agents Chemother; 2008 Jul; 52(7):2346-54. PubMed ID: 18443109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane.
    Gupta A; Balabaskaran-Nina P; Nguitragool W; Saggu GS; Schureck MA; Desai SA
    mBio; 2018 May; 9(3):. PubMed ID: 29739907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Histone Methyltransferase Inhibitor Can Reverse Epigenetically Acquired Drug Resistance in the Malaria Parasite Plasmodium falciparum.
    Chan A; Dziedziech A; Kirkman LA; Deitsch KW; Ankarklev J
    Antimicrob Agents Chemother; 2020 May; 64(6):. PubMed ID: 32179524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the Plasmodium falciparum Clonally Variant clag3 Genes in Human Infections.
    Mira-Martínez S; van Schuppen E; Amambua-Ngwa A; Bottieau E; Affara M; Van Esbroeck M; Vlieghe E; Guetens P; Rovira-Graells N; Gómez-Pérez GP; Alonso PL; D'Alessandro U; Rosanas-Urgell A; Cortés A
    J Infect Dis; 2017 Mar; 215(6):938-945. PubMed ID: 28419281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium chloroquine resistance and the search for a replacement antimalarial drug.
    Wellems TE
    Science; 2002 Oct; 298(5591):124-6. PubMed ID: 12364789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites.
    Mira-Martínez S; Rovira-Graells N; Crowley VM; Altenhofen LM; Llinás M; Cortés A
    Cell Microbiol; 2013 Nov; 15(11):1913-23. PubMed ID: 23819786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PfCRT and its role in antimalarial drug resistance.
    Ecker A; Lehane AM; Clain J; Fidock DA
    Trends Parasitol; 2012 Nov; 28(11):504-14. PubMed ID: 23020971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimalarial drug targets and drugs targeting dolichol metabolic pathway of Plasmodium falciparum.
    Qidwai T; Priya A; Khan NA; Tripathi H; Khan F; Darokar MP; Pal A; Bawankule DU; Shukla RK; Bhakuni RS
    Curr Drug Targets; 2014 Apr; 15(4):374-409. PubMed ID: 23848395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmodium falciparum: epigenetic control of var gene regulation and disease.
    Deshmukh AS; Srivastava S; Dhar SK
    Subcell Biochem; 2013; 61():659-82. PubMed ID: 23150271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered plasmodial surface anion channel activity and in vitro resistance to permeating antimalarial compounds.
    Lisk G; Pain M; Sellers M; Gurnev PA; Pillai AD; Bezrukov SM; Desai SA
    Biochim Biophys Acta; 2010 Sep; 1798(9):1679-88. PubMed ID: 20451492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in malaria genomics and epigenomics.
    Kirchner S; Power BJ; Waters AP
    Genome Med; 2016 Sep; 8(1):92. PubMed ID: 27605022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development.
    Deniskin R; Frame IJ; Sosa Y; Akabas MH
    Int J Parasitol Drugs Drug Resist; 2016 Apr; 6(1):1-11. PubMed ID: 26862473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is PfCRT a channel or a carrier? Two competing models explaining chloroquine resistance in Plasmodium falciparum.
    Sanchez CP; Stein WD; Lanzer M
    Trends Parasitol; 2007 Jul; 23(7):332-9. PubMed ID: 17493873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CLAG3 mutation in an amphipathic transmembrane domain alters malaria parasite nutrient channels and confers leupeptin resistance.
    Sharma P; Rayavara K; Ito D; Basore K; Desai SA
    Infect Immun; 2015 Jun; 83(6):2566-74. PubMed ID: 25870226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transporters involved in resistance to antimalarial drugs.
    Valderramos SG; Fidock DA
    Trends Pharmacol Sci; 2006 Nov; 27(11):594-601. PubMed ID: 16996622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity.
    Lucchi NW; Komino F; Okoth SA; Goldman I; Onyona P; Wiegand RE; Juma E; Shi YP; Barnwell JW; Udhayakumar V; Kariuki S
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7540-7. PubMed ID: 26392510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.