BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23720772)

  • 1. Metformin increases mitochondrial energy formation in L6 muscle cell cultures.
    Vytla VS; Ochs RS
    J Biol Chem; 2013 Jul; 288(28):20369-77. PubMed ID: 23720772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMP-activated protein kinase in metabolic control and insulin signaling.
    Towler MC; Hardie DG
    Circ Res; 2007 Feb; 100(3):328-41. PubMed ID: 17307971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metformin activates AMP kinase through inhibition of AMP deaminase.
    Ouyang J; Parakhia RA; Ochs RS
    J Biol Chem; 2011 Jan; 286(1):1-11. PubMed ID: 21059655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimentally induced defects of mitochondrial metabolism in rat skeletal muscle. Biological effects of the mitochondrial uncoupling agent 2,4-dinitrophenol.
    Byrne E; Hayes DJ; Shoubridge EA; Morgan-Hughes JA; Clark JB
    Biochem J; 1985 Jul; 229(1):101-8. PubMed ID: 4038252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acids revert the inhibition of respiration caused by the antidiabetic drug metformin to facilitate their mitochondrial β-oxidation.
    González-Barroso MM; Anedda A; Gallardo-Vara E; Redondo-Horcajo M; Rodríguez-Sánchez L; Rial E
    Biochim Biophys Acta; 2012 Oct; 1817(10):1768-75. PubMed ID: 22386881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of 5' AMP-activated protein kinase activation and glucose uptake stimulation by mitochondrial uncoupling and hyperosmolar stress: differential sensitivities to intracellular Ca2+ and protein kinase C inhibition.
    Patel N; Khayat ZA; Ruderman NB; Klip A
    Biochem Biophys Res Commun; 2001 Jul; 285(4):1066-70. PubMed ID: 11467861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large enhancement of skeletal muscle cell glucose uptake and suppression of hepatocyte glucose-6-phosphatase activity by weak uncouplers of oxidative phosphorylation.
    Martineau LC
    Biochim Biophys Acta; 2012 Feb; 1820(2):133-50. PubMed ID: 22155143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms.
    Saeedi R; Parsons HL; Wambolt RB; Paulson K; Sharma V; Dyck JR; Brownsey RW; Allard MF
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2497-506. PubMed ID: 18375721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells.
    Salani B; Ravera S; Fabbi P; Garibaldi S; Passalacqua M; Brunelli C; Maggi D; Cordera R; Ameri P
    Cell Physiol Biochem; 2017; 43(3):879-890. PubMed ID: 28954268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of metformin on glucose metabolism of perfused rat livers.
    Silva FM; da Silva MH; Bracht A; Eller GJ; Constantin RP; Yamamoto NS
    Mol Cell Biochem; 2010 Jul; 340(1-2):283-9. PubMed ID: 20217188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes.
    Meng Q; Qi X; Fu Y; Chen Q; Cheng P; Yu X; Sun X; Wu J; Li W; Zhang Q; Li Y; Wang A; Bian H
    J Ethnopharmacol; 2020 Feb; 248():112326. PubMed ID: 31639486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation.
    Hawley SA; Ross FA; Chevtzoff C; Green KA; Evans A; Fogarty S; Towler MC; Brown LJ; Ogunbayo OA; Evans AM; Hardie DG
    Cell Metab; 2010 Jun; 11(6):554-65. PubMed ID: 20519126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism by which imeglimin inhibits gluconeogenesis in rat liver cells.
    Vial G; Lamarche F; Cottet-Rousselle C; Hallakou-Bozec S; Borel AL; Fontaine E
    Endocrinol Diabetes Metab; 2021 Apr; 4(2):e00211. PubMed ID: 33855213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration.
    Faraut B; Giannesini B; Matarazzo V; Marqueste T; Dalmasso C; Rougon G; Cozzone PJ; Bendahan D
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1474-82. PubMed ID: 17264228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver.
    Soboll S; Scholz R; Heldt HW
    Eur J Biochem; 1978 Jun; 87(2):377-90. PubMed ID: 668699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional regulation of adenosine 5'-monophosphate-activated protein kinase activity by berberine and metformin in response to changes in ambient glucose concentration.
    Xiao Y; Xu M; Alimujiang M; Bao Y; Wei L; Yin J
    J Cell Biochem; 2018 Dec; 119(12):9910-9920. PubMed ID: 30129983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle.
    Sahlin K; Gorski J; Edström L
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP consumption by uncoupled mitochondria activates sarcolemmal K(ATP) channels in cardiac myocytes.
    Sasaki N; Sato T; Marbán E; O'Rourke B
    Am J Physiol Heart Circ Physiol; 2001 Apr; 280(4):H1882-8. PubMed ID: 11247805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.