These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 23720813)
21. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. Haroon F; Drögemüller K; Händel U; Brunn A; Reinhold D; Nishanth G; Mueller W; Trautwein C; Ernst M; Deckert M; Schlüter D J Immunol; 2011 Jun; 186(11):6521-31. PubMed ID: 21515788 [TBL] [Abstract][Full Text] [Related]
22. Evidence that Fas and FasL contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Dittel BN Arch Immunol Ther Exp (Warsz); 2000; 48(5):381-8. PubMed ID: 11140465 [TBL] [Abstract][Full Text] [Related]
23. Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of NF-kappa B in the activation and differentiation of autoreactive T cells. Hilliard B; Samoilova EB; Liu TS; Rostami A; Chen Y J Immunol; 1999 Sep; 163(5):2937-43. PubMed ID: 10453042 [TBL] [Abstract][Full Text] [Related]
25. Role of MOG-stimulated Th1 type "light up" (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE). Yura M; Takahashi I; Serada M; Koshio T; Nakagami K; Yuki Y; Kiyono H J Autoimmun; 2001 Aug; 17(1):17-25. PubMed ID: 11488634 [TBL] [Abstract][Full Text] [Related]
26. Nitric-oxide-dependent and independent mechanisms of protection from CNS inflammation during Th1-mediated autoimmunity: evidence from EAE in iNOS KO mice. Dalton DK; Wittmer S J Neuroimmunol; 2005 Mar; 160(1-2):110-21. PubMed ID: 15710464 [TBL] [Abstract][Full Text] [Related]
27. Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. Reiman R; Gerard C; Campbell IL; Barnum SR Eur J Immunol; 2002 Apr; 32(4):1157-63. PubMed ID: 11932923 [TBL] [Abstract][Full Text] [Related]
29. CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis. Liu JQ; Carl JW; Joshi PS; RayChaudhury A; Pu XA; Shi FD; Bai XF J Immunol; 2007 May; 178(10):6227-35. PubMed ID: 17475850 [TBL] [Abstract][Full Text] [Related]
31. Interleukin-36γ is expressed by neutrophils and can activate microglia, but has no role in experimental autoimmune encephalomyelitis. Bozoyan L; Dumas A; Patenaude A; Vallières L J Neuroinflammation; 2015 Sep; 12():173. PubMed ID: 26377915 [TBL] [Abstract][Full Text] [Related]
32. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. Bhasin M; Wu M; Tsirka SE BMC Immunol; 2007 Jul; 8():10. PubMed ID: 17634104 [TBL] [Abstract][Full Text] [Related]
33. Atf6α deficiency suppresses microglial activation and ameliorates pathology of experimental autoimmune encephalomyelitis. Ta HM; Le TM; Ishii H; Takarada-Iemata M; Hattori T; Hashida K; Yamamoto Y; Mori K; Takahashi R; Kitao Y; Hori O J Neurochem; 2016 Dec; 139(6):1124-1137. PubMed ID: 27333444 [TBL] [Abstract][Full Text] [Related]
34. Interactions between hemopoietically derived TNF and central nervous system-resident glial chemokines underlie initiation of autoimmune inflammation in the brain. Murphy CA; Hoek RM; Wiekowski MT; Lira SA; Sedgwick JD J Immunol; 2002 Dec; 169(12):7054-62. PubMed ID: 12471141 [TBL] [Abstract][Full Text] [Related]
35. Accelerated axon loss in MOG35-55 experimental autoimmune encephalomyelitis (EAE) in myelin-associated glycoprotein-deficient (MAGKO) mice. Jones MV; Nguyen TT; Ewaleifoh O; Lebson L; Whartenby KA; Griffin JW; Calabresi PA J Neuroimmunol; 2013 Sep; 262(1-2):53-61. PubMed ID: 23899666 [TBL] [Abstract][Full Text] [Related]
36. Sex-Specific Effects of Microglia-Like Cell Engraftment during Experimental Autoimmune Encephalomyelitis. Han J; Zhu K; Zhou K; Hakim R; Sankavaram SR; Blomgren K; Lund H; Zhang XM; Harris RA Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957621 [TBL] [Abstract][Full Text] [Related]
37. Genetic ablation of steroid receptor coactivator-3 promotes PPAR-beta-mediated alternative activation of microglia in experimental autoimmune encephalomyelitis. Xiao Y; Xu J; Wang S; Mao C; Jin M; Ning G; Xu J; Zhang Y Glia; 2010 Jun; 58(8):932-42. PubMed ID: 20155818 [TBL] [Abstract][Full Text] [Related]
38. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. Becher B; Durell BG; Noelle RJ J Clin Invest; 2003 Oct; 112(8):1186-91. PubMed ID: 14561703 [TBL] [Abstract][Full Text] [Related]
39. The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery. Liu Z; Xu Y; Zhang X; Song J; Sorokin L; Bähler M J Neuroimmunol; 2015 May; 282():25-32. PubMed ID: 25903725 [TBL] [Abstract][Full Text] [Related]
40. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. Lewis ND; Hill JD; Juchem KW; Stefanopoulos DE; Modis LK J Neuroimmunol; 2014 Dec; 277(1-2):26-38. PubMed ID: 25270668 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]