These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1035 related articles for article (PubMed ID: 23720889)
21. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Anjum SA; Tanveer M; Ashraf U; Hussain S; Shahzad B; Khan I; Wang L Environ Sci Pollut Res Int; 2016 Sep; 23(17):17132-41. PubMed ID: 27215981 [TBL] [Abstract][Full Text] [Related]
22. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C₄) and Cleome spinosa (C₃) under drought stress. Uzilday B; Turkan I; Sekmen AH; Ozgur R; Karakaya HC Plant Sci; 2012 Jan; 182():59-70. PubMed ID: 22118616 [TBL] [Abstract][Full Text] [Related]
23. Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.). Devi R; Kaur N; Gupta AK Indian J Biochem Biophys; 2012 Aug; 49(4):257-65. PubMed ID: 23077787 [TBL] [Abstract][Full Text] [Related]
24. Inter-subspecies diversity of maize to drought stress with physio-biochemical, enzymatic and molecular responses. Eskikoy G; Kutlu I PeerJ; 2024; 12():e17931. PubMed ID: 39184382 [TBL] [Abstract][Full Text] [Related]
25. Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Distelbarth H; Nägele T; Heyer AG Plant Biol (Stuttg); 2013 Nov; 15(6):982-90. PubMed ID: 23578291 [TBL] [Abstract][Full Text] [Related]
26. Effect of zinc on antioxidant response in maize (Zea mays L.) leaves. Pandey N; Singh AK; Pathak GC; Sharma CP Indian J Exp Biol; 2002 Aug; 40(8):954-6. PubMed ID: 12597030 [TBL] [Abstract][Full Text] [Related]
27. Copper-caused oxidative stress triggers the activation of antioxidant enzymes via ZmMPK3 in maize leaves. Liu J; Wang J; Lee S; Wen R PLoS One; 2018; 13(9):e0203612. PubMed ID: 30222757 [TBL] [Abstract][Full Text] [Related]
28. Differential response of quinoa genotypes to drought and foliage-applied H Iqbal H; Yaning C; Waqas M; Shareef M; Raza ST Ecotoxicol Environ Saf; 2018 Nov; 164():344-354. PubMed ID: 30130733 [TBL] [Abstract][Full Text] [Related]
29. Sphaerophysa kotschyana, an endemic species from Central Anatolia: antioxidant system responses under salt stress. Yildiztugay E; Ozfidan-Konakci C; Kucukoduk M J Plant Res; 2013 Sep; 126(5):729-42. PubMed ID: 23761064 [TBL] [Abstract][Full Text] [Related]
30. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). Wang J; Zhong X; Zhu K; Lv J; Lv X; Li F; Shi Z Environ Sci Pollut Res Int; 2018 Jul; 25(19):19012-19027. PubMed ID: 29721793 [TBL] [Abstract][Full Text] [Related]
31. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.). Gou W; Zheng P; Tian L; Gao M; Zhang L; Akram NA; Ashraf M J Plant Res; 2017 May; 130(3):599-609. PubMed ID: 28324190 [TBL] [Abstract][Full Text] [Related]
32. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Khan M; Daud MK; Basharat A; Khan MJ; Azizullah A; Muhammad N; Muhammad N; Ur Rehman Z; Zhu SJ Environ Sci Pollut Res Int; 2016 May; 23(9):8431-40. PubMed ID: 26782322 [TBL] [Abstract][Full Text] [Related]
33. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Zhang Y; Tan J; Guo Z; Lu S; He S; Shu W; Zhou B Plant Cell Environ; 2009 May; 32(5):509-19. PubMed ID: 19183289 [TBL] [Abstract][Full Text] [Related]
34. Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Hasanuzzaman M; Hossain MA; Fujita M Biol Trace Elem Res; 2012 Nov; 149(2):248-61. PubMed ID: 22535598 [TBL] [Abstract][Full Text] [Related]
35. Hydrogen peroxide generation and antioxidant enzyme activities in the leaves and roots of wheat cultivars subjected to long-term soil drought stress. Huseynova IM; Aliyeva DR; Mammadov ACh; Aliyev JA Photosynth Res; 2015 Aug; 125(1-2):279-89. PubMed ID: 26008794 [TBL] [Abstract][Full Text] [Related]
36. The role of antioxidant responses on the tolerance range of extreme halophyte Salsola crassa grown under toxic salt concentrations. Yildiztugay E; Ozfidan-Konakci C; Kucukoduk M Ecotoxicol Environ Saf; 2014 Dec; 110():21-30. PubMed ID: 25193881 [TBL] [Abstract][Full Text] [Related]
37. Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress. Erdal S Plant Physiol Biochem; 2012 Aug; 57():1-7. PubMed ID: 22634365 [TBL] [Abstract][Full Text] [Related]
38. Influence of lanthanides on the antioxidative defense system in maize seedlings under cold stress. Wang Y; Zhou M; Gong X; Liu C; Hong M; Wang L; Hong F Biol Trace Elem Res; 2011 Sep; 142(3):819-30. PubMed ID: 20737244 [TBL] [Abstract][Full Text] [Related]
39. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Gajewska E; Skłodowska M Biometals; 2007 Feb; 20(1):27-36. PubMed ID: 16752220 [TBL] [Abstract][Full Text] [Related]
40. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Wang H; Feng T; Peng X; Yan M; Tang X Ecotoxicol Environ Saf; 2009 Jul; 72(5):1354-62. PubMed ID: 19375798 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]