These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23721080)

  • 1. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures.
    Jungjohann KL; Bliznakov S; Sutter PW; Stach EA; Sutter EA
    Nano Lett; 2013 Jun; 13(6):2964-70. PubMed ID: 23721080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase.
    Bhattarai N; Prozorov T
    Front Bioeng Biotechnol; 2019; 7():19. PubMed ID: 30863747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.
    Sutter EA; Sutter PW
    J Am Chem Soc; 2014 Dec; 136(48):16865-70. PubMed ID: 25407028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Observations of Shell Growth and Oxidative Etching Behaviors of Pd Nanoparticles in Solutions by Liquid Cell Transmission Electron Microscopy.
    Su T; Wang ZL; Wang Z
    Small; 2019 Apr; 15(14):e1900050. PubMed ID: 30844138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ liquid cell electron microscopy of Ag-Au galvanic replacement reactions.
    Sutter EA; Sutter PW
    Nanoscale; 2017 Jan; 9(3):1271-1278. PubMed ID: 28054692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The shape evolution of gold seeds and gold@silver core-shell nanostructures.
    Wu Y; Jiang P; Jiang M; Wang TW; Guo CF; Xie SS; Wang ZL
    Nanotechnology; 2009 Jul; 20(30):305602. PubMed ID: 19584416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.
    Tan SF; Lin G; Bosman M; Mirsaidov U; Nijhuis CA
    ACS Nano; 2016 Aug; 10(8):7689-95. PubMed ID: 27389989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions.
    Chen D; Li C; Liu H; Ye F; Yang J
    Sci Rep; 2015 Jul; 5():11949. PubMed ID: 26144550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.
    Tan SF; Chee SW; Lin G; Bosman M; Lin M; Mirsaidov U; Nijhuis CA
    J Am Chem Soc; 2016 Apr; 138(16):5190-3. PubMed ID: 27043921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of Au-Pd core-shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination.
    Chiu CY; Yang MY; Lin FC; Huang JS; Huang MH
    Nanoscale; 2014 Jul; 6(13):7656-65. PubMed ID: 24898776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Au Nanoparticles in Liquid Cell Transmission Electron Microscopy: From a Systematic Study to Engineered Nanostructures.
    Zhang Y; Keller D; Rossell MD; Erni R
    Chem Mater; 2017 Dec; 29(24):10518-10525. PubMed ID: 29307957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.
    Song H; Luo Z; Liu M; Zhang G; Peng W; Wang B; Zhu Y
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.
    Zhang L; Niu W; Zhao J; Zhu S; Yuan Y; Hua L; Xu G
    Faraday Discuss; 2013; 164():175-88. PubMed ID: 24466664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity.
    Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH
    J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation.
    Wang W; Zhang J; Yang S; Ding B; Song X
    ChemSusChem; 2013 Oct; 6(10):1945-51. PubMed ID: 23929810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold.
    Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH
    Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron beam induced evolution in Au, Ag, and interfaced heterogeneous Au/Ag nanoparticles.
    Liu Y; Sun Y
    Nanoscale; 2015 Aug; 7(32):13687-93. PubMed ID: 26213998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-Encoded Morphological Evolution of Bimetallic Pd@Au Core-shell Nanoparticles from a High-indexed Core.
    Reddy Satyavolu NS; Pishevaresfahani N; Tan LH; Lu Y
    Nano Res; 2018 Sep; 11(9):4549-4561. PubMed ID: 30906510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.