These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2372110)

  • 1. Conjugation of synthetic peptides to proteins: quantitation from S-carboxymethylcysteine released upon acid hydrolysis.
    Kolodny N; Robey FA
    Anal Biochem; 1990 May; 187(1):136-40. PubMed ID: 2372110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent.
    Bernatowicz MS; Matsueda GR
    Anal Biochem; 1986 May; 155(1):95-102. PubMed ID: 3717562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated synthesis of N-bromoacetyl-modified peptides for the preparation of synthetic peptide polymers, peptide-protein conjugates, and cyclic peptides.
    Robey FA; Fields RL
    Anal Biochem; 1989 Mar; 177(2):373-7. PubMed ID: 2729557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic strategy for simultaneous purification-conjugation of antigenic peptides.
    Ponsati B; Giralt E; Andreu D
    Anal Biochem; 1989 Sep; 181(2):389-95. PubMed ID: 2817402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-hydroxysuccinimide ester of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine: a heterobifunctional cross-linking agent.
    Bernatowicz MS; Matsueda GR
    Biochem Biophys Res Commun; 1985 Nov; 132(3):1046-50. PubMed ID: 4074345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-Carrier Conjugation.
    Hansen PR
    Methods Mol Biol; 2015; 1348():51-7. PubMed ID: 26424262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved conjugation method for controlled covalent coupling of synthetic peptides to proteins using glutaraldehyde in a dialysis method.
    Zegers N; Gerritse K; Deen C; Boersma W; Claassen E
    J Immunol Methods; 1990 Jul; 130(2):195-200. PubMed ID: 2115551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imparting mineral affinity to proteins with thiol-labile disulfide linkages.
    Bansal G; Wright JE; Zhang S; Zernicke RF; Uludag H
    J Biomed Mater Res A; 2005 Sep; 74(4):618-28. PubMed ID: 16037953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-liquid chromatography of amino acids. Determination of cystine and cysteine as N-acetyl, n-propyl S-carboxymethylcysteinate.
    Moodie IM; George RD
    J Chromatogr; 1976 Sep; 124(2):315-9. PubMed ID: 965464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated synthesis and use of N-chloroacetyl-modified peptides for the preparation of synthetic peptide polymers and peptide-protein immunogens.
    Lindner W; Robey FA
    Int J Pept Protein Res; 1987 Dec; 30(6):794-800. PubMed ID: 3440702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cysteine-containing peptides in protein digests by high-performance liquid chromatography.
    Fullmer CS
    Anal Biochem; 1984 Nov; 142(2):336-9. PubMed ID: 6528972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-carboxymethylcysteine sulfone: instability to acid hydrolysis and unreactivity with N-terminal reagents.
    Zervos C; Adams E
    Int J Pept Protein Res; 1977; 10(1):1-8. PubMed ID: 881289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of disulfide bonds in weakly alkaline media. II. Bovine serum albumin dimer.
    Andersson LO
    Biochim Biophys Acta; 1970 Feb; 200(2):363-9. PubMed ID: 4984557
    [No Abstract]   [Full Text] [Related]  

  • 14. A low-pH reverse-phase high-performance liquid chromatography system for analysis of the phenylthiohydantoins of S-carboxymethylcysteine and S-carboxyamidomethylcysteine.
    Sottrup-Jensen L
    Anal Biochem; 1995 Feb; 225(1):187-8. PubMed ID: 7778780
    [No Abstract]   [Full Text] [Related]  

  • 15. Direct determination of molecular ratios of peptides coupled via N-succinimidyl 3-(2-pyridyldithio)propionate to carrier proteins using high performance liquid chromatography.
    Bläsi U; Linke RP; Lubitz W
    J Immunol Methods; 1988 Apr; 108(1-2):209-12. PubMed ID: 3351310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for the controlled cleavage of disulfide bonds in proteins in the absence of denaturants.
    Kumar N; Kella D; Kinsella JE
    J Biochem Biophys Methods; 1985 Oct; 11(4-5):251-63. PubMed ID: 3840816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Controlled enzymatic protein hydrolysis in low pH areas. 1. Studies with bovine serum albumin].
    Diermayr P; Dehne L
    Z Lebensm Unters Forsch; 1990 Jun; 190(6):516-20. PubMed ID: 2382513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Determination of S-carboxymethylcysteine in plasma by HPLC and fluorimetric detection].
    Gaetani E; Laureri CF; Vitto M; Bordi F
    Farmaco Prat; 1982 Jul; 37(7):235-8. PubMed ID: 7128774
    [No Abstract]   [Full Text] [Related]  

  • 19. Determination of S-carboxymethylcysteine in syrup formulations by high-performance liquid chromatography.
    Melucci CK; Lyman GW; Bond AD; Johnson RN
    J Chromatogr; 1987 Mar; 391(1):321-4. PubMed ID: 3584328
    [No Abstract]   [Full Text] [Related]  

  • 20. Use of Nalpha-Fmoc-cysteine(S-thiobutyl) derivatized oligodeoxynucleotides for the preparation of oligodeoxynucleotide-peptide hybrid molecules.
    Soukchareun S; Haralambidis J; Tregear G
    Bioconjug Chem; 1998; 9(4):466-75. PubMed ID: 9667948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.