These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 2372126)
1. Selective real-time measurement of styrene vapor using a surface-acoustic-wave sensor with a regenerable organoplatinum coating. Zellers ET; Hassold N; White RM; Rappaport SM Anal Chem; 1990 Jul; 62(13):1227-32. PubMed ID: 2372126 [TBL] [Abstract][Full Text] [Related]
2. Use of a surface-acoustic-wave sensor to characterize the reaction of styrene vapor with a square-planar organoplatinum complex. Zellers ET; White RM; Rappaport SM Anal Chem; 1990 Jul; 62(13):1222-7. PubMed ID: 2372125 [TBL] [Abstract][Full Text] [Related]
3. Coated surface acoustic wave sensor employing a reversible mass-amplifying ligand substitution reaction for real-time measurement of 1,3-butadiene at low- and sub-ppm concentrations. Zhang GZ; Zellers ET Anal Chem; 1993 May; 65(10):1340-9. PubMed ID: 8517547 [TBL] [Abstract][Full Text] [Related]
4. Exploiting charge-transfer complexation for selective measurement of gas-phase olefins with nanoparticle-coated chemiresistors. Rowe MP; Steinecker WH; Zellers ET Anal Chem; 2007 Feb; 79(3):1164-72. PubMed ID: 17263350 [TBL] [Abstract][Full Text] [Related]
5. Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays. Zellers ET; Batterman SA; Han M; Patrash SJ Anal Chem; 1995 Mar; 67(6):1092-106. PubMed ID: 7717524 [TBL] [Abstract][Full Text] [Related]
6. Steric factors affecting the discrimination of isomeric and structurally related olefin gases and vapors with a reagent-coated surface acoustic wave sensor. Zellers ET; Zhang GZ Anal Chem; 1992 Jun; 64(11):1277-84. PubMed ID: 1621995 [TBL] [Abstract][Full Text] [Related]
7. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays. Zellers ET; Han M Anal Chem; 1996 Jul; 68(14):2409-18. PubMed ID: 8686930 [TBL] [Abstract][Full Text] [Related]
8. Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array. Groves WA; Zellers ET Ann Occup Hyg; 2001 Nov; 45(8):609-23. PubMed ID: 11718657 [TBL] [Abstract][Full Text] [Related]
9. Selective detection of elemental mercury vapor using a surface acoustic wave (SAW) sensor. Kabir KM; Sabri YM; Matthews GI; Jones LA; Ippolito SJ; Bhargava SK Analyst; 2015 Aug; 140(16):5508-17. PubMed ID: 26065560 [TBL] [Abstract][Full Text] [Related]
10. A personal sampling method for the determination of styrene exposure. Brown RH; Saunders KJ; Walkin KT Am Ind Hyg Assoc J; 1987 Sep; 48(9):760-5. PubMed ID: 3687735 [TBL] [Abstract][Full Text] [Related]
11. A field method for measuring solvent vapors in exhaled air--application to styrene exposure. Rappaport SM; Kure E; Petreas M; Ting D; Woodlee J Scand J Work Environ Health; 1991 Jun; 17(3):195-204. PubMed ID: 2068559 [TBL] [Abstract][Full Text] [Related]
12. Comparison of sensor characteristics of three real-time monitors for organic vapors. Hori H; Ishimatsu S; Fueta Y; Hinoue M; Ishidao T J Occup Health; 2015; 57(1):13-9. PubMed ID: 25422129 [TBL] [Abstract][Full Text] [Related]
13. Temperature and humidity compensation in the determination of solvent vapors with a microsensor system. Park J; Zellers ET Analyst; 2000 Oct; 125(10):1775-82. PubMed ID: 11070547 [TBL] [Abstract][Full Text] [Related]
14. Personal monitoring instrument for the selective measurement of multiple organic vapors. Park J; Zhang GZ; Zellers ET AIHAJ; 2000; 61(2):192-204. PubMed ID: 10782191 [TBL] [Abstract][Full Text] [Related]
15. TiO(2)/LiCl-based nanostructured thin film for humidity sensor applications. Buvailo AI; Xing Y; Hines J; Dollahon N; Borguet E ACS Appl Mater Interfaces; 2011 Feb; 3(2):528-33. PubMed ID: 21284374 [TBL] [Abstract][Full Text] [Related]
16. [Occupational exposure to organic solvent vapors among workers in industrial enterprises of Estonia]. Veimer S; Potjomkina O Med Pr; 1996; 47(5):455-60. PubMed ID: 9026625 [TBL] [Abstract][Full Text] [Related]
17. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors. Patrash SJ; Zellers ET Anal Chem; 1993 Aug; 65(15):2055-66. PubMed ID: 8372969 [TBL] [Abstract][Full Text] [Related]
18. Surface acoustic wave sensor based on Au/TiO Wang C; Ding Y; Li M; Li H; Xu S; Li C; Qian L; Yang B Anal Chim Acta; 2022 Jan; 1190():339264. PubMed ID: 34857144 [TBL] [Abstract][Full Text] [Related]
19. Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Lu CJ; Whiting J; Sacks RD; Zellers ET Anal Chem; 2003 Mar; 75(6):1400-9. PubMed ID: 12659202 [TBL] [Abstract][Full Text] [Related]
20. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses. Grate JW; Zellers ET Anal Chem; 2000 Jul; 72(13):2861-8. PubMed ID: 10905319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]