BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23721421)

  • 1. In-depth proteomic analysis of mouse cochlear sensory epithelium by mass spectrometry.
    Darville LN; Sokolowski BH
    J Proteome Res; 2013 Aug; 12(8):3620-30. PubMed ID: 23721421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up and shotgun proteomics to identify a comprehensive cochlear proteome.
    Darville LN; Sokolowski BH
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24638115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new insight into the impact of different proteases on SILAC quantitative proteome of the mouse liver.
    Ma J; Li W; Lv Y; Chang C; Wu S; Song L; Ding C; Wei H; He F; Jiang Y; Zhu Y
    Proteomics; 2013 Aug; 13(15):2238-42. PubMed ID: 23703833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized proteomic analysis of rat liver microsomes using dual enzyme digestion with 2D-LC-MS/MS.
    Golizeh M; Sleno L
    J Proteomics; 2013 Apr; 82():166-78. PubMed ID: 23454493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloud-point extraction and delipidation of porcine brain proteins in combination with bottom-up mass spectrometry approaches for proteome analysis.
    Shevchenko G; Sjödin MO; Malmström D; Wetterhall M; Bergquist J
    J Proteome Res; 2010 Aug; 9(8):3903-11. PubMed ID: 20586484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of membrane and hydrophilic proteins simultaneously derived from the mouse brain using cloud-point extraction.
    Wetterhall M; Shevchenko G; Artemenko K; Sjödin MO; Bergquist J
    Anal Bioanal Chem; 2011 Jul; 400(9):2827-36. PubMed ID: 21553125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liver plasma membranes: an effective method to analyze membrane proteome.
    Cao R; Liang S
    Methods Mol Biol; 2012; 909():113-23. PubMed ID: 22903712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome.
    Wiśniewski JR; Zougman A; Mann M
    J Proteome Res; 2009 Dec; 8(12):5674-8. PubMed ID: 19848406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of mouse liver membrane proteins using multidimensional separations and tandem mass spectrometry.
    Wang Z; Wang M; Tong W
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Dec; 878(31):3259-66. PubMed ID: 21050830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gel-based mass spectrometric analysis of hippocampal transmembrane proteins using high resolution LTQ Orbitrap Velos Pro.
    Heo S; Spoerk S; Birner-Gruenberger R; Lubec G
    Proteomics; 2014 Sep; 14(17-18):2084-8. PubMed ID: 25044505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GOFAST: an integrated approach for efficient and comprehensive membrane proteome analysis.
    Yu Y; Xie L; Gunawardena HP; Khatun J; Maier C; Spitzer W; Leerkes M; Giddings MC; Chen X
    Anal Chem; 2012 Nov; 84(21):9008-14. PubMed ID: 23030679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes.
    Mitra SK; Walters BT; Clouse SD; Goshe MB
    J Proteome Res; 2009 Jun; 8(6):2752-67. PubMed ID: 19334764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved recovery and identification of membrane proteins from rat hepatic cells using a centrifugal proteomic reactor.
    Zhou H; Wang F; Wang Y; Ning Z; Hou W; Wright TG; Sundaram M; Zhong S; Yao Z; Figeys D
    Mol Cell Proteomics; 2011 Oct; 10(10):O111.008425. PubMed ID: 21749988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysine Propionylation To Boost Sequence Coverage and Enable a "Silent SILAC" Strategy for Relative Protein Quantification.
    Schräder CU; Moore S; Goodarzi AA; Schriemer DC
    Anal Chem; 2018 Aug; 90(15):9077-9084. PubMed ID: 29975514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking LysC Proteolysis by 'Arginine Modification-cum-Trypsin Digestion': Comparison of Bottom-up & Middle-down Proteomic Approaches by ESI Q-TOF MS.
    Pandeswari PB; Chary RN; Kamalanathan AS; Prabhakar S; Sabareesh V
    Protein Pept Lett; 2021; 28(12):1379-1390. PubMed ID: 34587878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue.
    Taverna D; Norris JL; Caprioli RM
    Anal Chem; 2015 Jan; 87(1):670-6. PubMed ID: 25427280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of workflows optimized for in-gel, in-solution, and on-filter proteolysis in the analysis of plasma membrane proteins.
    Choksawangkarn W; Edwards N; Wang Y; Gutierrez P; Fenselau C
    J Proteome Res; 2012 May; 11(5):3030-4. PubMed ID: 22500775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database.
    Friso G; Giacomelli L; Ytterberg AJ; Peltier JB; Rudella A; Sun Q; Wijk KJ
    Plant Cell; 2004 Feb; 16(2):478-99. PubMed ID: 14729914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of sample preparation techniques for large-scale proteomics.
    Kuljanin M; Dieters-Castator DZ; Hess DA; Postovit LM; Lajoie GA
    Proteomics; 2017 Jan; 17(1-2):. PubMed ID: 27860397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.