These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23721610)

  • 21. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model.
    Del Grosso S; Ojima D; Parton W; Mosier A; Peterson G; Schimel D
    Environ Pollut; 2002; 116 Suppl 1():S75-83. PubMed ID: 11833921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crop rotations for increased soil carbon: perenniality as a guiding principle.
    King AE; Blesh J
    Ecol Appl; 2018 Jan; 28(1):249-261. PubMed ID: 29112790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soil organic carbon and nitrogen accumulation in plots of rhizoma perennial peanut and bahiagrass grown in elevated carbon dioxide and temperature.
    Allen LH; Albrecht SL; Boote KJ; Thomas JM; Newman YC; Skirvin KW
    J Environ Qual; 2006; 35(4):1405-12. PubMed ID: 16825461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon budget and greenhouse gas balance during the initial years after rice paddy conversion to vegetable cultivation.
    Wu L; Wu X; Lin S; Wu Y; Tang S; Zhou M; Shaaban M; Zhao J; Hu R; Kuzyakov Y; Wu J
    Sci Total Environ; 2018 Jun; 627():46-56. PubMed ID: 29426168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study over 33 years shows that carbon and nitrogen stocks in a subtropical soil are increasing under native vegetation in a changing climate.
    Dalal RC; Thornton CM; Allen DE; Kopittke PM
    Sci Total Environ; 2021 Jun; 772():145019. PubMed ID: 33578168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia.
    Fujisaki K; Perrin AS; Desjardins T; Bernoux M; Balbino LC; Brossard M
    Glob Chang Biol; 2015 Jul; 21(7):2773-2786. PubMed ID: 25726833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unexpected increases in soil carbon eventually fell in low rainfall farming systems.
    Badgery WB; Mwendwa JM; Anwar MR; Simmons AT; Broadfoot KM; Rohan M; Singh BP
    J Environ Manage; 2020 May; 261():110192. PubMed ID: 32148267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio.
    Shrestha RK; Lal R
    J Environ Qual; 2007; 36(6):1775-83. PubMed ID: 17965380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulating soil C dynamics under intensive agricultural systems and climate change scenarios in the Matopiba region, Brazil.
    Santos RS; Zhang Y; Cotrufo MF; Hong M; Oliveira DMS; Damian JM; Cerri CEP
    J Environ Manage; 2023 Dec; 347():119149. PubMed ID: 37783087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Five-year vegetation conversion from pasture to C
    Hosogoe Y; Nguyen-Sy T; Tang S; Bimantara PO; Sekikawa Y; Kautsar V; Kimani SM; Xu X; Tawaraya K; Cheng W
    Sci Total Environ; 2024 Feb; 912():169481. PubMed ID: 38142001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland.
    Gollany HT; Polumsky RW
    J Environ Qual; 2018 Jul; 47(4):625-634. PubMed ID: 30025049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil organic matter dynamics in semiarid agroecosystems transitioning to dryland.
    Ghimire R; Khanal BR
    PeerJ; 2020; 8():e10199. PubMed ID: 33150087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of nitrogen fertilization in sustaining organic matter in cultivated soils.
    Ladha JK; Reddy CK; Padre AT; van Kessel C
    J Environ Qual; 2011; 40(6):1756-66. PubMed ID: 22031558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in soil organic carbon and soil erosion for native pasture and minimum till agricultural management systems.
    Wells T; Hancock GR; Martinez C; Dever C; Kunkel V; Gibson A
    Sci Total Environ; 2019 May; 666():618-630. PubMed ID: 30807952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions.
    Sainju UM; Senwo ZN; Nyakatawa EZ; Tazisong IA; Reddy KC
    J Environ Qual; 2008; 37(3):880-8. PubMed ID: 18453410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil.
    Amado TJ; Bayer C; Conceição PC; Spagnollo E; de Campos BH; da Veiga M
    J Environ Qual; 2006; 35(4):1599-607. PubMed ID: 16825480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems.
    Grandy AS; Loecke TD; Parr S; Robertson GP
    J Environ Qual; 2006; 35(4):1487-95. PubMed ID: 16825469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil.
    Franco AL; Cherubin MR; Pavinato PS; Cerri CE; Six J; Davies CA; Cerri CC
    Sci Total Environ; 2015 May; 515-516():30-8. PubMed ID: 25688522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term in situ moisture conservation in horti-pasture system improves biological health of degraded land.
    Ghosh A; Kumar S; Manna MC; Singh AK; Sharma P; Sarkar A; Saha M; Bhattacharyya R; Misra S; Biswas SS; Biswas DR; Gautam K; Kumar RV
    J Environ Manage; 2019 Oct; 248():109339. PubMed ID: 31394477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.