These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23721735)

  • 21. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from
    Bahoua B; Sevdalis SE; Soto AM
    Biochemistry; 2021 Sep; 60(37):2781-2794. PubMed ID: 34472844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species.
    Robinson CJ; Vincent HA; Wu MC; Lowe PT; Dunstan MS; Leys D; Micklefield J
    J Am Chem Soc; 2014 Jul; 136(30):10615-24. PubMed ID: 24971878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer.
    Atilho RM; Mirihana Arachchilage G; Greenlee EB; Knecht KM; Breaker RR
    Elife; 2019 Apr; 8():. PubMed ID: 30950790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silk macromolecules with amino acid-poly(ethylene glycol) grafts for controlling layer-by-layer encapsulation and aggregation of recombinant bacterial cells.
    Drachuk I; Calabrese R; Harbaugh S; Kelley-Loughnane N; Kaplan DL; Stone M; Tsukruk VV
    ACS Nano; 2015 Feb; 9(2):1219-35. PubMed ID: 25588116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching.
    Torgerson CD; Hiller DA; Stav S; Strobel SA
    RNA; 2018 Dec; 24(12):1813-1827. PubMed ID: 30237163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis.
    Watson PY; Fedor MJ
    Nat Chem Biol; 2012 Dec; 8(12):963-5. PubMed ID: 23086297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
    Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU
    Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch.
    Kumar V; Endoh T; Murakami K; Sugimoto N
    Chem Commun (Camb); 2012 Oct; 48(78):9693-5. PubMed ID: 22854864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Riboswitch-Mediated Detection of Metabolite Fluctuations During Live Cell Imaging of Bacteria.
    Weiss CA; Winkler WC
    Methods Mol Biol; 2021; 2323():153-170. PubMed ID: 34086280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
    Trausch JJ; Ceres P; Reyes FE; Batey RT
    Structure; 2011 Oct; 19(10):1413-23. PubMed ID: 21906956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Riboswitches].
    Bugała K; Zywicki M; Wyszko E; Barciszewska MZ; Barciszewski J
    Postepy Biochem; 2005; 51(2):111-9. PubMed ID: 16209348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
    Kang M; Peterson R; Feigon J
    Mol Cell; 2009 Mar; 33(6):784-90. PubMed ID: 19285444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.
    Lemay JF; Desnoyers G; Blouin S; Heppell B; Bastet L; St-Pierre P; Massé E; Lafontaine DA
    PLoS Genet; 2011 Jan; 7(1):e1001278. PubMed ID: 21283784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The kinetics of ligand binding by an adenine-sensing riboswitch.
    Wickiser JK; Cheah MT; Breaker RR; Crothers DM
    Biochemistry; 2005 Oct; 44(40):13404-14. PubMed ID: 16201765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Five Purine Riboswitches in Cellular and Cell-Free Expression Systems.
    Lins MRDCR; Corrêa GG; Amorim LADS; Franco RAL; Ribeiro NV; Jesus VN; Pedrolli DB
    Curr Microbiol; 2022 May; 79(7):207. PubMed ID: 35622174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of deletion of 3'-noncoding region of the Bacillus intermedius glutamyl endopeptidase gene on the active protein production level in the culture of the B. subtilis cells].
    Gasanov EV; Romanova DV; Gromova TIu; Demidiuk IV
    Mol Gen Mikrobiol Virusol; 2007; (2):31-2. PubMed ID: 17598455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control.
    Blouin S; Lafontaine DA
    RNA; 2007 Aug; 13(8):1256-67. PubMed ID: 17585050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.
    Huang L; Serganov A; Patel DJ
    Mol Cell; 2010 Dec; 40(5):774-86. PubMed ID: 21145485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.