These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 23722316)
1. A preliminary analysis of the data from an in vitro inflation-extension test can validate the assumption of arterial tissue elasticity. Rachev A; Shazly T J Biomech Eng; 2013 Aug; 135(8):84502. PubMed ID: 23722316 [TBL] [Abstract][Full Text] [Related]
2. The biaxial active mechanical properties of the porcine primary renal artery. Zhou B; Rachev A; Shazly T J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605 [TBL] [Abstract][Full Text] [Related]
3. A passive strain-energy function for elastic and muscular arteries: correlation of material parameters with histological data. Sokolis DP Med Biol Eng Comput; 2010 Jun; 48(6):507-18. PubMed ID: 20390462 [TBL] [Abstract][Full Text] [Related]
4. Role of elastin anisotropy in structural strain energy functions of arterial tissue. Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025 [TBL] [Abstract][Full Text] [Related]
5. Introducing mesoscopic information into constitutive equations for arterial walls. Ogden RW; Saccomandi G Biomech Model Mechanobiol; 2007 Sep; 6(5):333-44. PubMed ID: 17124617 [TBL] [Abstract][Full Text] [Related]
6. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Horgan CO; Saccomandi G Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694 [TBL] [Abstract][Full Text] [Related]
7. A biomechanical model of artery buckling. Han HC J Biomech; 2007; 40(16):3672-8. PubMed ID: 17689541 [TBL] [Abstract][Full Text] [Related]
8. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries. Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of biaxial tension tests of soft tissues. Bursa J; Zemanek M Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012 [TBL] [Abstract][Full Text] [Related]
10. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. Holzapfel GA; Gasser TC; Ogden RW J Biomech Eng; 2004 Apr; 126(2):264-75. PubMed ID: 15179858 [TBL] [Abstract][Full Text] [Related]
11. Modelling the mechanical response of elastin for arterial tissue. Watton PN; Ventikos Y; Holzapfel GA J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942 [TBL] [Abstract][Full Text] [Related]
12. Experimental evidence of the compressibility of arteries. Yosibash Z; Manor I; Gilad I; Willentz U J Mech Behav Biomed Mater; 2014 Nov; 39():339-54. PubMed ID: 25173235 [TBL] [Abstract][Full Text] [Related]
14. Biomechanics of porcine renal arteries and role of axial stretch. Avril S; Badel P; Gabr M; Sutton MA; Lessner SM J Biomech Eng; 2013 Aug; 135(8):81007. PubMed ID: 23722353 [TBL] [Abstract][Full Text] [Related]
16. Biaxial elastic material properties of porcine coronary media and adventitia. Pandit A; Lu X; Wang C; Kassab GS Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2581-7. PubMed ID: 15792993 [TBL] [Abstract][Full Text] [Related]
17. Stress analysis of vasoconstriction at arterial branch sites. Fenton TR; Gibson WG; Taylor JR J Biomech; 1986; 19(7):501-9. PubMed ID: 3745222 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear elastic analysis of blood vessels. Wu SG; Lee GC; Tseng NT J Biomech Eng; 1984 Nov; 106(4):376-83. PubMed ID: 6513535 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. Avril S; Badel P; Duprey A J Biomech; 2010 Nov; 43(15):2978-85. PubMed ID: 20673669 [TBL] [Abstract][Full Text] [Related]
20. Identification of elastic properties of homogeneous, orthotropic vascular segments in distension. Vorp DA; Rajagopal KR; Smolinski PJ; Borovetz HS J Biomech; 1995 May; 28(5):501-12. PubMed ID: 7775487 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]