These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23722463)
1. DevStaR: high-throughput quantification of C. elegans developmental stages. White AG; Lees B; Kao HL; Cipriani PG; Munarriz E; Paaby AB; Erickson K; Guzman S; Rattanakorn K; Sontag E; Geiger D; Gunsalus KC; Piano F IEEE Trans Med Imaging; 2013 Oct; 32(10):1791-803. PubMed ID: 23722463 [TBL] [Abstract][Full Text] [Related]
2. Rapid and accurate developmental stage recognition of C. elegans from high-throughput image data. White AG; Cipriani PG; Kao HL; Lees B; Geiger D; Sontag E; Gunsalus KC; Piano F Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit; 2010 Aug; 2010(13-18 June 2010):3089-3096. PubMed ID: 22053146 [TBL] [Abstract][Full Text] [Related]
4. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images. Chiang M; Hallman S; Cinquin A; de Mochel NR; Paz A; Kawauchi S; Calof AL; Cho KW; Fowlkes CC; Cinquin O BMC Bioinformatics; 2015 Nov; 16():397. PubMed ID: 26607933 [TBL] [Abstract][Full Text] [Related]
7. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking. Hamahashi S; Onami S; Kitano H BMC Bioinformatics; 2005 May; 6():125. PubMed ID: 15910690 [TBL] [Abstract][Full Text] [Related]
8. Toward automatic phenotyping of developing embryos from videos. Ning F; Delhomme D; LeCun Y; Piano F; Bottou L; Barbano PE IEEE Trans Image Process; 2005 Sep; 14(9):1360-71. PubMed ID: 16190471 [TBL] [Abstract][Full Text] [Related]
9. WorMachine: machine learning-based phenotypic analysis tool for worms. Hakim A; Mor Y; Toker IA; Levine A; Neuhof M; Markovitz Y; Rechavi O BMC Biol; 2018 Jan; 16(1):8. PubMed ID: 29338709 [TBL] [Abstract][Full Text] [Related]
10. Biologically constrained optimization based cell membrane segmentation in C. elegans embryos. Azuma Y; Onami S BMC Bioinformatics; 2017 Jun; 18(1):307. PubMed ID: 28629355 [TBL] [Abstract][Full Text] [Related]
12. Whole-animal high-throughput screens: the C. elegans model. O'Rourke EJ; Conery AL; Moy TI Methods Mol Biol; 2009; 486():57-75. PubMed ID: 19347616 [TBL] [Abstract][Full Text] [Related]
13. Automated screening of C. elegans neurodegeneration mutants enabled by microfluidics and image analysis algorithms. de Carlos Cáceres I; Porto DA; Gallotta I; Santonicola P; Rodríguez-Cordero J; Di Schiavi E; Lu H Integr Biol (Camb); 2018 Sep; 10(9):539-548. PubMed ID: 30116818 [TBL] [Abstract][Full Text] [Related]
14. Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques. Puchalt JC; Sánchez-Salmerón AJ; Ivorra E; Llopis S; Martínez R; Martorell P Sci Rep; 2021 Jun; 11(1):12289. PubMed ID: 34112931 [TBL] [Abstract][Full Text] [Related]
15. A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans. Olmedo M; Geibel M; Artal-Sanz M; Merrow M Genetics; 2015 Oct; 201(2):443-8. PubMed ID: 26294666 [TBL] [Abstract][Full Text] [Related]
16. Automated detection and analysis of foraging behavior in Caenorhabditis elegans. Huang KM; Cosman P; Schafer WR J Neurosci Methods; 2008 Jun; 171(1):153-64. PubMed ID: 18342950 [TBL] [Abstract][Full Text] [Related]
17. A novel computational approach for simultaneous tracking and feature extraction of C. elegans populations in fluid environments. Tsechpenakis G; Bianchi L; Metaxas D; Driscoll M IEEE Trans Biomed Eng; 2008 May; 55(5):1539-49. PubMed ID: 18440900 [TBL] [Abstract][Full Text] [Related]