These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23722773)

  • 1. Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique.
    Gross S; Alberich M; Arriola A; Withford MJ; Fuerbach A
    Opt Lett; 2013 Jun; 38(11):1872-4. PubMed ID: 23722773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer.
    Baba T; Kokubun Y
    Appl Opt; 1990 Jun; 29(18):2781-92. PubMed ID: 20567329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated ARROW waveguides with hollow cores.
    Yin D; Schmidt H; Barber J; Hawkins A
    Opt Express; 2004 Jun; 12(12):2710-5. PubMed ID: 19475112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime.
    Miese C; Withford MJ; Fuerbach A
    Opt Express; 2011 Sep; 19(20):19542-50. PubMed ID: 21996895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.
    Long X; Bai J; Zhao W; Stoian R; Hui R; Cheng G
    Opt Lett; 2012 Aug; 37(15):3138-40. PubMed ID: 22859111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.
    Liu H; Jia Y; Vázquez de Aldana JR; Jaque D; Chen F
    Opt Express; 2012 Aug; 20(17):18620-9. PubMed ID: 23038502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of planar antiresonant reflecting optical waveguide structures on silicon by an Abbe refractometer.
    Smith B; Clark DF; Hamilton C
    Opt Lett; 1995 Oct; 20(20):2084-6. PubMed ID: 19862258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorophore-doped xerogel antiresonant reflecting optical waveguides.
    Llobera A; Cadarso VJ; Carregal-Romero E; Brugger J; Domínguez C; Fernández-Sánchez C
    Opt Express; 2011 Mar; 19(6):5026-39. PubMed ID: 21445138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond direct-written integrated mode couplers.
    Riesen N; Gross S; Love JD; Withford MJ
    Opt Express; 2014 Dec; 22(24):29855-61. PubMed ID: 25606915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits.
    Fernandes LA; Grenier JR; Herman PR; Aitchison JS; Marques PV
    Opt Express; 2011 Sep; 19(19):18294-301. PubMed ID: 21935196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards femtosecond laser written arrayed waveguide gratings.
    Douglass G; Dreisow F; Gross S; Nolte S; Withford MJ
    Opt Express; 2015 Aug; 23(16):21392-402. PubMed ID: 26367987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Y-splitting antiresonant reflecting optical waveguides-based rib waveguides.
    Stott MA; Black J; Hamilton E; Schmidt H; Hawkins AR
    Opt Eng; 2016 Oct; 55(10):. PubMed ID: 28190900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN.
    Gross S; Ams M; Lancaster DG; Monro TM; Fuerbach A; Withford MJ
    Opt Lett; 2012 Oct; 37(19):3999-4001. PubMed ID: 23027258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser processing for optofluidic fabrication.
    Sugioka K; Cheng Y
    Lab Chip; 2012 Oct; 12(19):3576-89. PubMed ID: 22820547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical antiresonant reflecting optical waveguide coupler for three-dimensional optical interconnects: optimum design for large tolerance, high coupling efficiency, and short coupling length.
    Sekimoto T; Ikuta S; Pan W; Chu ST; Kokubun Y
    Appl Opt; 2000 Jan; 39(3):426-30. PubMed ID: 18337911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides.
    Holmes MR; Shang T; Hawkins AR; Rudenko M; Measor P; Schmidt H
    J Micro Nanolithogr MEMS MOEMS; 2010; 9(2):23004. PubMed ID: 21922035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing.
    Hou M; Zhu F; Wang Y; Wang Y; Liao C; Liu S; Lu P
    Opt Express; 2016 Nov; 24(24):27890-27898. PubMed ID: 27906357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission.
    Lunt EJ; Wu B; Keeley JM; Measor P; Schmidt H; Hawkins AR
    IEEE Photonics Technol Lett; 2010 Jul; 22(15):1147-1149. PubMed ID: 21423839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.