These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23722793)

  • 1. Spectral hole burning in silicon waveguides with a graphene layer on top.
    Cheng Z; Tsang HK; Xu K; Shi Z
    Opt Lett; 2013 Jun; 38(11):1930-2. PubMed ID: 23722793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Broadband Nonlinearity Enhancement based on a Novel Graphene-Silicon Hybrid Waveguide: Structure Design and Theoretical Analysis.
    Jin Q; Li X; Chen J; Gao S
    Sci Rep; 2017 Sep; 7(1):12290. PubMed ID: 28947827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear distortion of optical pulses by self-produced free carriers in short or highly lossy silicon-based waveguides.
    Renner H
    Opt Express; 2012 Nov; 20(23):25718-43. PubMed ID: 23187390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-carrier absorption modulation in silicon nanocrystal slot waveguides.
    Creazzo T; Redding B; Marchena E; Shi S; Prather DW
    Opt Lett; 2010 Nov; 35(21):3691-3. PubMed ID: 21042393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron dynamics of silicon surface states: second-harmonic hole burning on Si(111)-(7 x 7).
    McGuire JA; Raschke MB; Shen YR
    Phys Rev Lett; 2006 Mar; 96(8):087401. PubMed ID: 16606222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A continuous-wave Raman silicon laser.
    Rong H; Jones R; Liu A; Cohen O; Hak D; Fang A; Paniccia M
    Nature; 2005 Feb; 433(7027):725-8. PubMed ID: 15716948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared free-carrier absorption in silicon nanocrystals.
    Kekatpure RD; Brongersma ML
    Opt Lett; 2009 Nov; 34(21):3397-9. PubMed ID: 19881606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides.
    Rong H; Kuo YH; Liu A; Paniccia M; Cohen O
    Opt Express; 2006 Feb; 14(3):1182-8. PubMed ID: 19503440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical pump & probe and injected carrier losses quantification in Er doped Si slot waveguides.
    Ramírez JM; Berencén Y; Ferrarese Lupi F; Navarro-Urrios D; Anopchenko A; Tengattini A; Prtljaga N; Pavesi L; Rivallin P; Fedeli JM; Garrido B
    Opt Express; 2012 Dec; 20(27):28808-18. PubMed ID: 23263121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical autocorrelation performance of silicon wire p-i-n waveguides utilizing the enhanced two-photon absorption.
    Cong G; Ohno M; Maegami Y; Okano M; Yamada K
    Opt Express; 2016 Dec; 24(26):29452-29458. PubMed ID: 28059331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-order nonlinear silicon-organic hybrid waveguides.
    Alloatti L; Korn D; Weimann C; Koos C; Freude W; Leuthold J
    Opt Express; 2012 Aug; 20(18):20506-15. PubMed ID: 23037098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge.
    Liu X; Driscoll JB; Dadap JI; Osgood RM; Assefa S; Vlasov YA; Green WM
    Opt Express; 2011 Apr; 19(8):7778-89. PubMed ID: 21503088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband radio-frequency spectrum analysis in spectral-hole-burning media.
    Colice M; Schlottau F; Wagner KH
    Appl Opt; 2006 Sep; 45(25):6393-408. PubMed ID: 16912776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.
    Zhu S; Fang Q; Yu MB; Lo GQ; Kwong DL
    Opt Express; 2009 Nov; 17(23):20891-9. PubMed ID: 19997326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J; Li X
    Opt Express; 2013 Jan; 21(2):1840-8. PubMed ID: 23389168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth.
    Zhang J; Cassan E; Zhang X
    Opt Lett; 2013 Jun; 38(12):2089-91. PubMed ID: 23938986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study.
    Zhang Y; Husko C; Lefrancois S; Rey IH; Krauss TF; Schröder J; Eggleton BJ
    Opt Express; 2015 Jun; 23(13):17101-10. PubMed ID: 26191718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap.
    Bayer C; Straub M
    Appl Opt; 2009 Sep; 48(27):5050-4. PubMed ID: 19767917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators.
    Gosciniak J; Tan DT
    Nanotechnology; 2013 May; 24(18):185202. PubMed ID: 23575218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high-speed wavelength conversion in a silicon photonic chip.
    Hu H; Ji H; Galili M; Pu M; Peucheret C; Christian H Mulvad H; Yvind K; Hvam JM; Jeppesen P; Oxenløwe LK
    Opt Express; 2011 Oct; 19(21):19886-94. PubMed ID: 21996996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.