BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23723013)

  • 1. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays.
    Hsu YH; Moya ML; Hughes CC; George SC; Lee AP
    Lab Chip; 2013 Aug; 13(15):2990-8. PubMed ID: 23723013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic devices for construction of contractile skeletal muscle microtissues.
    Shimizu K; Araki H; Sakata K; Tonomura W; Hashida M; Konishi S
    J Biosci Bioeng; 2015 Feb; 119(2):212-6. PubMed ID: 25085533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially controlled diffusion range of tumor-associated angiogenic factors to develop a tumor model using a microfluidic resistive circuit.
    Hsu YH; Yang WC; Chen YT; Lin CY; Yang CF; Liu WW; Shivani S; Li PC
    Lab Chip; 2024 May; 24(10):2644-2657. PubMed ID: 38576341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.
    Rismani Yazdi S; Shadmani A; Bürgel SC; Misun PM; Hierlemann A; Frey O
    Lab Chip; 2015 Nov; 15(21):4138-47. PubMed ID: 26401602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.
    Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O
    J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.
    Wang X; Phan DT; Sobrino A; George SC; Hughes CC; Lee AP
    Lab Chip; 2016 Jan; 16(2):282-90. PubMed ID: 26616908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
    Jeong GS; Oh J; Kim SB; Dokmeci MR; Bae H; Lee SH; Khademhosseini A
    Lab Chip; 2014 Nov; 14(21):4213-9. PubMed ID: 25184743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seamless Combination of Fluorescence-Activated Cell Sorting and Hanging-Drop Networks for Individual Handling and Culturing of Stem Cells and Microtissue Spheroids.
    Birchler A; Berger M; Jäggin V; Lopes T; Etzrodt M; Misun PM; Pena-Francesch M; Schroeder T; Hierlemann A; Frey O
    Anal Chem; 2016 Jan; 88(2):1222-9. PubMed ID: 26694967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms.
    Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP
    Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay.
    Sugiura S; Edahiro J; Kikuchi K; Sumaru K; Kanamori T
    Biotechnol Bioeng; 2008 Aug; 100(6):1156-65. PubMed ID: 18553395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full range physiological mass transport control in 3D tissue cultures.
    Hsu YH; Moya ML; Abiri P; Hughes CC; George SC; Lee AP
    Lab Chip; 2013 Jan; 13(1):81-9. PubMed ID: 23090158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic pressure sensing using trapped air compression.
    Srivastava N; Burns MA
    Lab Chip; 2007 May; 7(5):633-7. PubMed ID: 17476384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic array with cellular valving for single cell co-culture.
    Frimat JP; Becker M; Chiang YY; Marggraf U; Janasek D; Hengstler JG; Franzke J; West J
    Lab Chip; 2011 Jan; 11(2):231-7. PubMed ID: 20978708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication.
    Alonzo LF; Moya ML; Shirure VS; George SC
    Lab Chip; 2015 Sep; 15(17):3521-9. PubMed ID: 26190172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Axonal Spikes in Cultured Neuronal Networks Using Microelectrode Arrays and Microchannel Devices.
    Hong N; Joo S; Nam Y
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):492-498. PubMed ID: 27187941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing a vascular endothelium array with blood components using underlying microfluidic channels.
    Genes LI; V Tolan N; Hulvey MK; Martin RS; Spence DM
    Lab Chip; 2007 Oct; 7(10):1256-9. PubMed ID: 17896007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.