These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 23723128)
41. A versatile all-channel stimulator for electrode arrays, with real-time control. Wagenaar DA; Potter SM J Neural Eng; 2004 Mar; 1(1):39-45. PubMed ID: 15876621 [TBL] [Abstract][Full Text] [Related]
42. Flexible thin film electrode arrays for minimally-invasive neurological monitoring. Kim J; Richner TJ; Thongpang S; Sillay KA; Niemann DB; Ahmed AS; Krugner-Higby LA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5506-9. PubMed ID: 19964122 [TBL] [Abstract][Full Text] [Related]
43. Design and fabrication of neural implant with thick microchannels based on flexible polymeric materials. Benmerah S; Lacour SP; Tarte E Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6400-3. PubMed ID: 19964420 [TBL] [Abstract][Full Text] [Related]
44. 3D microprobes for deep brain stimulation and recording. Fomani AA; Moradi M; Assaf S; Mansour RR Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1808-11. PubMed ID: 21095938 [TBL] [Abstract][Full Text] [Related]
45. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972 [TBL] [Abstract][Full Text] [Related]
46. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior. Wu Y; Temple BA; Sevilla N; Zhang J; Zhu H; Zolotavin P; Jin Y; Duarte D; Sanders E; Azim E; Nimmerjahn A; Pfaff SL; Luan L; Xie C Cell Rep; 2024 May; 43(5):114199. PubMed ID: 38728138 [TBL] [Abstract][Full Text] [Related]
47. A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat. Berg RW; Chen MT; Huang HC; Hsiao MC; Cheng H J Neurosci Methods; 2009 Aug; 182(1):49-54. PubMed ID: 19505501 [TBL] [Abstract][Full Text] [Related]
48. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Williams JC; Rennaker RL; Kipke DR Brain Res Brain Res Protoc; 1999 Dec; 4(3):303-13. PubMed ID: 10592339 [TBL] [Abstract][Full Text] [Related]
49. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study. Sanchez JC; Alba N; Nishida T; Batich C; Carney PR IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298 [TBL] [Abstract][Full Text] [Related]
50. Very low-noise ENG amplifier system using CMOS technology. Rieger R; Schuettler M; Pal D; Clarke C; Langlois P; Taylor J; Donaldson N IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):427-37. PubMed ID: 17190035 [TBL] [Abstract][Full Text] [Related]
51. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface. Gore RK; Choi Y; Bellamkonda R; English A J Neural Eng; 2015 Feb; 12(1):016017. PubMed ID: 25605627 [TBL] [Abstract][Full Text] [Related]
52. The Fabrication, Implantation, and Stability of Intraspinal Microwire Arrays in the Spinal Cord of Cat and Rat. Bamford JA; Marc Lebel R; Parseyan K; Mushahwar VK IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):287-296. PubMed ID: 28113558 [TBL] [Abstract][Full Text] [Related]
53. A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electrodes, fine wires, needles and microsensors. Eckhorn R; Thomas U J Neurosci Methods; 1993 Sep; 49(3):175-9. PubMed ID: 8271837 [TBL] [Abstract][Full Text] [Related]
54. [A comparative study of microwire electrode array with built-in and external reference electrodes]. Zhang LN; DU XX; Zhang YT; Guo X; Hao N; Zhao X; Zhang Y Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2022 Jan; 38(1):85-90. PubMed ID: 35634676 [No Abstract] [Full Text] [Related]
55. Perforated silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation. Wallman L; Levinsson A; Schouenborg J; Holmberg H; Montelius L; Danielsen N; Laurell T IEEE Trans Biomed Eng; 1999 Sep; 46(9):1065-73. PubMed ID: 10493069 [TBL] [Abstract][Full Text] [Related]
56. An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents. Muthuswamy J; Okandan M; Gilletti A; Baker MS; Jain T IEEE Trans Biomed Eng; 2005 Aug; 52(8):1470-7. PubMed ID: 16119243 [TBL] [Abstract][Full Text] [Related]
57. HermesB: a continuous neural recording system for freely behaving primates. Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699 [TBL] [Abstract][Full Text] [Related]
58. Arrays for chronic functional microstimulation of the lumbosacral spinal cord. McCreery D; Pikov V; Lossinsky A; Bullara L; Agnew W IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):195-207. PubMed ID: 15218934 [TBL] [Abstract][Full Text] [Related]
59. Extracellular matrix proteins as temporary coating for thin-film neural implants. Ceyssens F; Deprez M; Turner N; Kil D; van Kuyck K; Welkenhuysen M; Nuttin B; Badylak S; Puers R J Neural Eng; 2017 Feb; 14(1):014001. PubMed ID: 28068287 [TBL] [Abstract][Full Text] [Related]