BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23723151)

  • 21. GDNF preconditioning can overcome Schwann cell phenotypic memory.
    Marquardt LM; Sakiyama-Elbert SE
    Exp Neurol; 2015 Mar; 265():1-7. PubMed ID: 25496841
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of autologous and allogenic platelet-rich plasma on human gingival fibroblast function.
    Creeper F; Ivanovski S
    Oral Dis; 2012 Jul; 18(5):494-500. PubMed ID: 22273115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells.
    Iwase T; Jung CG; Bae H; Zhang M; Soliven B
    J Neurochem; 2005 Sep; 94(6):1488-99. PubMed ID: 16086701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury.
    Liu G; Wang X; Shao G; Liu Q
    Mol Med Rep; 2014 Apr; 9(4):1305-12. PubMed ID: 24549701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promoting potential of adipose derived stem cells on peripheral nerve regeneration.
    Guo J; Guo S; Wang Y; Yu Y
    Mol Med Rep; 2017 Nov; 16(5):7297-7304. PubMed ID: 28944869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of platelet-rich plasma in vitro on primary cells: rat osteoblast-like cells and human endothelial cells.
    Mooren RE; Hendriks EJ; van den Beucken JJ; Merkx MA; Meijer GJ; Jansen JA; Stoelinga PJ
    Tissue Eng Part A; 2010 Oct; 16(10):3159-72. PubMed ID: 20618090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy.
    Tomita K; Madura T; Sakai Y; Yano K; Terenghi G; Hosokawa K
    Neuroscience; 2013 Apr; 236():55-65. PubMed ID: 23370324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro.
    Stessuk T; Puzzi MB; Chaim EA; Alves PC; de Paula EV; Forte A; Izumizawa JM; Oliveira CC; Frei F; Ribeiro-Paes JT
    Arch Dermatol Res; 2016 Sep; 308(7):511-20. PubMed ID: 27394438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fibroblast-derived tenascin-C promotes Schwann cell migration through β1-integrin dependent pathway during peripheral nerve regeneration.
    Zhang Z; Yu B; Gu Y; Zhou S; Qian T; Wang Y; Ding G; Ding F; Gu X
    Glia; 2016 Mar; 64(3):374-85. PubMed ID: 26497118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nerve conduit filled with GDNF gene-modified Schwann cells enhances regeneration of the peripheral nerve.
    Li Q; Ping P; Jiang H; Liu K
    Microsurgery; 2006; 26(2):116-21. PubMed ID: 16538638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cdc42 Promotes Schwann Cell Proliferation and Migration Through Wnt/β-Catenin and p38 MAPK Signaling Pathway After Sciatic Nerve Injury.
    Han B; Zhao JY; Wang WT; Li ZW; He AP; Song XY
    Neurochem Res; 2017 May; 42(5):1317-1324. PubMed ID: 28097464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor.
    Li S; Wang X; Gu Y; Chen C; Wang Y; Liu J; Hu W; Yu B; Wang Y; Ding F; Liu Y; Gu X
    Mol Ther; 2015 Mar; 23(3):423-33. PubMed ID: 25394845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells.
    Salehi M; Naseri-Nosar M; Ebrahimi-Barough S; Nourani M; Khojasteh A; Farzamfar S; Mansouri K; Ai J
    Cell Mol Neurobiol; 2018 Apr; 38(3):703-713. PubMed ID: 28823058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair.
    Zhan C; Ma CB; Yuan HM; Cao BY; Zhu JJ
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):343-8. PubMed ID: 26499078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of panaxydol on hypoxia-induced cell death and expression and secretion of neurotrophic factors (NTFs) in hypoxic primary cultured Schwann cells.
    Zhu H; Wang WJ; Ding WL; Li F; He J
    Chem Biol Interact; 2008 Jul; 174(1):44-50. PubMed ID: 18541227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Platelet-Rich Plasma Promotes Migration, Proliferation, and the Gene Expression of Scleraxis and Vascular Endothelial Growth Factor in Paratenon-Derived Cells In Vitro.
    Imai S; Kumagai K; Yamaguchi Y; Miyatake K; Saito T
    Sports Health; 2019; 11(2):142-148. PubMed ID: 30376405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nerve allografts supplemented with schwann cells overexpressing glial-cell-line-derived neurotrophic factor.
    Santosa KB; Jesuraj NJ; Viader A; MacEwan M; Newton P; Hunter DA; Mackinnon SE; Johnson PJ
    Muscle Nerve; 2013 Feb; 47(2):213-23. PubMed ID: 23169341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro.
    Su Y; Zeng BF; Zhang CQ; Zhang KG; Xie XT
    Brain Res; 2007 May; 1145():41-7. PubMed ID: 17367764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of histone deacetylase inhibition on the survival, proliferation and migration of Schwann cells, as well as on the expression of neurotrophic factors and genes associated with myelination.
    Wang Y; Wu X; Zhong Y; Shen J; Wu X; Ju S; Wang X
    Int J Mol Med; 2014 Aug; 34(2):599-605. PubMed ID: 24888454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GDNF-ADSCs-APG embedding enhances sciatic nerve regeneration after electrical injury in a rat model.
    Zheng Z; Liu J
    J Cell Biochem; 2019 Sep; 120(9):14971-14985. PubMed ID: 31062403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.