These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23723162)

  • 1. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies.
    Ngara R; Ndimba BK
    Proteomics; 2014 Mar; 14(4-5):611-21. PubMed ID: 24339029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops?
    Sobhanian H; Aghaei K; Komatsu S
    J Proteomics; 2011 Aug; 74(8):1323-37. PubMed ID: 21440686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial amelioration of crop salinity stress.
    Dodd IC; Pérez-Alfocea F
    J Exp Bot; 2012 May; 63(9):3415-28. PubMed ID: 22403432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes.
    Jha UC; Bohra A; Jha R; Parida SK
    Plant Cell Rep; 2019 Mar; 38(3):255-277. PubMed ID: 30637478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+) transport in glycophytic plants: what we know and would like to know.
    Craig Plett D; Møller IS
    Plant Cell Environ; 2010 Apr; 33(4):612-26. PubMed ID: 19968828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops.
    Kausar R; Komatsu S
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics-based investigation of salt-responsive mechanisms in plant roots.
    Zhao Q; Zhang H; Wang T; Chen S; Dai S
    J Proteomics; 2013 Apr; 82():230-53. PubMed ID: 23385356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics techniques for the development of flood tolerant crops.
    Komatsu S; Hiraga S; Yanagawa Y
    J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum.
    Ngara R; Ndimba BK
    Plant Biol (Stuttg); 2014 Nov; 16(6):1029-32. PubMed ID: 25258177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment.
    Lakra N; Kaur C; Anwar K; Singla-Pareek SL; Pareek A
    Plant Cell Environ; 2018 May; 41(5):947-969. PubMed ID: 28337760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.
    Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X
    J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.
    Liu D; Ford KL; Roessner U; Natera S; Cassin AM; Patterson JH; Bacic A
    Proteomics; 2013 Jun; 13(12-13):2046-62. PubMed ID: 23661342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.