These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 23723976)
1. The role of interleukin-1 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial epithelial cells. Piper SC; Ferguson J; Kay L; Parker LC; Sabroe I; Sleeman MA; Briend E; Finch DK PLoS One; 2013; 8(5):e63365. PubMed ID: 23723976 [TBL] [Abstract][Full Text] [Related]
2. Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM-1 and IL-1beta. Terajima M; Yamaya M; Sekizawa K; Okinaga S; Suzuki T; Yamada N; Nakayama K; Ohrui T; Oshima T; Numazaki Y; Sasaki H Am J Physiol; 1997 Oct; 273(4):L749-59. PubMed ID: 9357849 [TBL] [Abstract][Full Text] [Related]
3. Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Wu Q; Jiang D; Schaefer NR; Harmacek L; O'Connor BP; Eling TE; Eickelberg O; Chu HW Am J Physiol Lung Cell Mol Physiol; 2018 Mar; 314(3):L514-L527. PubMed ID: 29192094 [TBL] [Abstract][Full Text] [Related]
4. Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection. Wiehler S; Proud D Am J Physiol Lung Cell Mol Physiol; 2007 Aug; 293(2):L505-15. PubMed ID: 17545490 [TBL] [Abstract][Full Text] [Related]
5. Allergic environment enhances airway epithelial pro-inflammatory responses to rhinovirus infection. Herbert C; Do K; Chiu V; Garthwaite L; Chen Y; Young PM; Traini D; Kumar RK Clin Sci (Lond); 2017 Mar; 131(6):499-509. PubMed ID: 28115681 [TBL] [Abstract][Full Text] [Related]
8. Corticosteroids and beta2 agonists differentially regulate rhinovirus-induced interleukin-6 via distinct Cis-acting elements. Edwards MR; Haas J; Panettieri RA; Johnson M; Johnston SL J Biol Chem; 2007 May; 282(21):15366-75. PubMed ID: 17395587 [TBL] [Abstract][Full Text] [Related]
9. Diversity in the bronchial epithelial cell response to infection with different rhinovirus strains. Wark PA; Grissell T; Davies B; See H; Gibson PG Respirology; 2009 Mar; 14(2):180-6. PubMed ID: 19207121 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. Sanders SP; Siekierski ES; Porter JD; Richards SM; Proud D J Virol; 1998 Feb; 72(2):934-42. PubMed ID: 9444985 [TBL] [Abstract][Full Text] [Related]
11. Nerve growth factor modulates human rhinovirus infection in airway epithelial cells by controlling ICAM-1 expression. Othumpangat S; Regier M; Piedimonte G Am J Physiol Lung Cell Mol Physiol; 2012 May; 302(10):L1057-66. PubMed ID: 22427528 [TBL] [Abstract][Full Text] [Related]
12. Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells. Wu Q; Jiang D; Huang C; van Dyk LF; Li L; Chu HW PLoS One; 2015; 10(4):e0124524. PubMed ID: 25879848 [TBL] [Abstract][Full Text] [Related]
13. Rhinovirus-induced IL-1β release from bronchial epithelial cells is independent of functional P2X7. Shi L; Manthei DM; Guadarrama AG; Lenertz LY; Denlinger LC Am J Respir Cell Mol Biol; 2012 Sep; 47(3):363-71. PubMed ID: 22493010 [TBL] [Abstract][Full Text] [Related]
14. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells. Maciejewski BA; Jamieson KC; Arnason JW; Kooi C; Wiehler S; Traves SL; Leigh R; Proud D Am J Physiol Lung Cell Mol Physiol; 2017 May; 312(5):L731-L740. PubMed ID: 28283475 [TBL] [Abstract][Full Text] [Related]
15. Modulation of the epithelial inflammatory response to rhinovirus in an atopic environment. Xatzipsalti M; Psarros F; Konstantinou G; Gaga M; Gourgiotis D; Saxoni-Papageorgiou P; Papadopoulos NG Clin Exp Allergy; 2008 Mar; 38(3):466-72. PubMed ID: 18269670 [TBL] [Abstract][Full Text] [Related]
16. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD. Baines KJ; Hsu AC; Tooze M; Gunawardhana LP; Gibson PG; Wark PA Respir Res; 2013 Feb; 14(1):15. PubMed ID: 23384071 [TBL] [Abstract][Full Text] [Related]
17. Role of interleukin-1 and MyD88-dependent signaling in rhinovirus infection. Stokes CA; Ismail S; Dick EP; Bennett JA; Johnston SL; Edwards MR; Sabroe I; Parker LC J Virol; 2011 Aug; 85(15):7912-21. PubMed ID: 21593174 [TBL] [Abstract][Full Text] [Related]
18. Human monocytic cells direct the robust release of CXCL10 by bronchial epithelial cells during rhinovirus infection. Korpi-Steiner NL; Valkenaar SM; Bates ME; Evans MD; Gern JE; Bertics PJ Clin Exp Allergy; 2010 Aug; 40(8):1203-13. PubMed ID: 20545701 [TBL] [Abstract][Full Text] [Related]
19. Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Vareille M; Kieninger E; Alves MP; Kopf BS; Möller A; Geiser T; Johnston SL; Edwards MR; Regamey N Thorax; 2012 Jun; 67(6):517-25. PubMed ID: 22213737 [TBL] [Abstract][Full Text] [Related]
20. Effect of exogenous interferons on rhinovirus replication and airway inflammatory responses. Becker TM; Durrani SR; Bochkov YA; Devries MK; Rajamanickam V; Jackson DJ Ann Allergy Asthma Immunol; 2013 Nov; 111(5):397-401. PubMed ID: 24125148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]