These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23724328)

  • 21. Industrial waste based compost as a source of novel cellulolytic strains and enzymes.
    Amore A; Pepe O; Ventorino V; Birolo L; Giangrande C; Faraco V
    FEMS Microbiol Lett; 2013 Feb; 339(2):93-101. PubMed ID: 23181595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Penicillium polonicum a new isolate obtained from Cerrado soil as a source of carbohydrate-active enzymes produced in response to sugarcane bagasse.
    de Camargo BR; Takematsu HM; Ticona ARP; da Silva LA; Silva FL; Quirino BF; Hamann PRV; Noronha EF
    3 Biotech; 2022 Dec; 12(12):348. PubMed ID: 36386566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and identification of local Bacillus isolates for xylanase biosynthesis.
    Ammoneh H; Harba M; Akeed Y; Al-Halabi M; Bakri Y
    Iran J Microbiol; 2014 Apr; 6(2):127-32. PubMed ID: 25705364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of cellulolytic enzymes from theXylaria andHypoxylon species of xylariaceae.
    Wei DL; Chang SC; Wei YH; Lin YW; Chuang CL; Jong SC
    World J Microbiol Biotechnol; 1992 Mar; 8(2):141-6. PubMed ID: 24425396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and Molecular Characterization of Five Bacillus Isolates Displaying Remarkable Carboxymethyl Cellulase Activities.
    Abd Elhameed E; Sayed ARM; Radwan TEE; Hassan G
    Curr Microbiol; 2020 Oct; 77(10):3076-3084. PubMed ID: 32710168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Isolation and identification of rumen bacteria for cellulolytic enzyme production].
    Aihemaiti M; Zhen F; Li Y; Aibaidoula G; Yimit W
    Wei Sheng Wu Xue Bao; 2013 May; 53(5):470-7. PubMed ID: 23957151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass.
    Dantur KI; Enrique R; Welin B; Castagnaro AP
    AMB Express; 2015; 5():15. PubMed ID: 25852992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen.
    Nyonyo T; Shinkai T; Mitsumori M
    FEMS Microbiol Ecol; 2014 Jun; 88(3):528-37. PubMed ID: 24612331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and Partial Characterisation of Thermophilic Cellulolytic Bacteria from North Malaysian Tropical Mangrove Soil.
    Naresh S; Kunasundari B; Gunny AAN; Teoh YP; Shuit SH; Ng QH; Hoo PY
    Trop Life Sci Res; 2019 Jan; 30(1):123-147. PubMed ID: 30847037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellulolytic bacteria from soils in harsh environments.
    Soares FL; Melo IS; Dias AC; Andreote FD
    World J Microbiol Biotechnol; 2012 May; 28(5):2195-203. PubMed ID: 22806042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulolytic Enzyme System of Thermoactinomyces sp. Grown on Microcrystalline Cellulose.
    Hägerdal BG; Ferchak JD; Pye EK
    Appl Environ Microbiol; 1978 Oct; 36(4):606-12. PubMed ID: 16345322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of cellulases and hemicellulases by an anaerobic mixed culture from lignocellulosic biomass.
    Tabassum R; Rajoka MI; Malik KA
    World J Microbiol Biotechnol; 1990 Mar; 6(1):39-45. PubMed ID: 24429888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches.
    Kanokratana P; Wongwilaiwalin S; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Champreda V
    J Biosci Bioeng; 2018 Apr; 125(4):439-447. PubMed ID: 29169786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus.
    Prasetyo J; Sumita S; Okuda N; Park EY
    Appl Biochem Biotechnol; 2010 Sep; 162(1):52-61. PubMed ID: 19882113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyphasic Characterization of Plant Growth Promoting Cellulose Degrading Bacteria Isolated from Organic Manures.
    Jain D; Ravina ; Bhojiya AA; Chauhan S; Rajpurohit D; Mohanty SR
    Curr Microbiol; 2021 Feb; 78(2):739-748. PubMed ID: 33416972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides.
    Pason P; Kyu KL; Ratanakhanokchai K
    Appl Environ Microbiol; 2006 Apr; 72(4):2483-90. PubMed ID: 16597947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the cellulolytic activity of a Bacillus isolate.
    Robson LM; Chambliss GH
    Appl Environ Microbiol; 1984 May; 47(5):1039-46. PubMed ID: 6742822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil.
    Gao ZM; Xu X; Ruan LW
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):465-74. PubMed ID: 23529681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts.
    Fathallh Eida M; Nagaoka T; Wasaki J; Kouno K
    Microbes Environ; 2012; 27(3):226-33. PubMed ID: 22353767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.