These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23724864)

  • 1. Factors affecting subject-specific finite element models of implant-fitted rat bone specimens: critical analysis of a technical protocol.
    Piccinini M; Cugnoni J; Botsis J; Zacchetti G; Ammann P; Wiskott A
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1403-17. PubMed ID: 23724864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
    Campbell GM; Glüer CC
    Curr Opin Rheumatol; 2017 Jul; 29(4):402-409. PubMed ID: 28376059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth surface micro finite element modelling of a cancellous bone analogue material.
    Leung SY; Browne M; New AM
    Proc Inst Mech Eng H; 2008 Jan; 222(1):145-9. PubMed ID: 18335725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peri-implant bone adaptations to overloading in rat tibiae: experimental investigations and numerical predictions.
    Piccinini M; Cugnoni J; Botsis J; Ammann P; Wiskott A
    Clin Oral Implants Res; 2016 Nov; 27(11):1444-1453. PubMed ID: 26864329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new material mapping procedure for quantitative computed tomography-based, continuum finite element analyses of the vertebra.
    Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2011 Jul; 133(7):071001. PubMed ID: 21823740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells.
    Kowalczyk P
    J Biomech; 2003 Jul; 36(7):961-72. PubMed ID: 12757805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of density-elasticity relationships for finite element modeling of human pelvic bone by modal analysis.
    Scholz R; Hoffmann F; von Sachsen S; Drossel WG; Klöhn C; Voigt C
    J Biomech; 2013 Oct; 46(15):2667-73. PubMed ID: 24001928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones.
    Eberle S; Göttlinger M; Augat P
    Med Eng Phys; 2013 Jul; 35(7):875-83. PubMed ID: 23010570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prospects of estimating trabecular bone tissue properties from the combination of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite element analysis.
    van Lenthe GH; van den Bergh JP; Hermus AR; Huiskes R
    J Bone Miner Res; 2001 Mar; 16(3):550-5. PubMed ID: 11277273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter study for the finite element modelling of long bones with computed-tomography-imaging-based stiffness distribution.
    Wullschleger L; Weisse B; Blaser D; Fürst AE
    Proc Inst Mech Eng H; 2010; 224(9):1095-107. PubMed ID: 21053774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models.
    Chen G; Wu FY; Liu ZC; Yang K; Cui F
    Med Eng Phys; 2015 Aug; 37(8):808-12. PubMed ID: 26054803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.
    Pakdel A; Fialkov J; Whyne CM
    J Biomech; 2016 Jun; 49(9):1454-1460. PubMed ID: 27033728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography.
    Su R; Campbell GM; Boyd SK
    Med Eng Phys; 2007 May; 29(4):480-90. PubMed ID: 16908211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach for assigning bone material properties from CT images into finite element models.
    Chen G; Schmutz B; Epari D; Rathnayaka K; Ibrahim S; Schuetz MA; Pearcy MJ
    J Biomech; 2010 Mar; 43(5):1011-5. PubMed ID: 19942221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.