These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23725015)

  • 1. The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera.
    Haridas S; Wang Y; Lim L; Massoumi Alamouti S; Jackman S; Docking R; Robertson G; Birol I; Bohlmann J; Breuil C
    BMC Genomics; 2013 Jun; 14():373. PubMed ID: 23725015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees.
    Wang Y; Lim L; DiGuistini S; Robertson G; Bohlmann J; Breuil C
    New Phytol; 2013 Feb; 197(3):886-898. PubMed ID: 23252416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera.
    Hesse-Orce U; DiGuistini S; Keeling CI; Wang Y; Li M; Henderson H; Docking TR; Liao NY; Robertson G; Holt RA; Jones SJ; Bohlmann J; Breuil C
    BMC Genomics; 2010 Oct; 11():536. PubMed ID: 20920358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen.
    DiGuistini S; Wang Y; Liao NY; Taylor G; Tanguay P; Feau N; Henrissat B; Chan SK; Hesse-Orce U; Alamouti SM; Tsui CK; Docking RT; Levasseur A; Haridas S; Robertson G; Birol I; Holt RA; Marra MA; Hamelin RC; Hirst M; Jones SJ; Bohlmann J; Breuil C
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2504-9. PubMed ID: 21262841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative abundance of mountain pine beetle fungal associates through the beetle life cycle in pine trees.
    Khadempour L; LeMay V; Jack D; Bohlmann J; Breuil C
    Microb Ecol; 2012 Nov; 64(4):909-17. PubMed ID: 22735936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.
    Wang Y; Lim L; Madilao L; Lah L; Bohlmann J; Breuil C
    Appl Environ Microbiol; 2014 Aug; 80(15):4566-76. PubMed ID: 24837377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control.
    Kandasamy D; Gershenzon J; Hammerbacher A
    J Chem Ecol; 2016 Sep; 42(9):952-969. PubMed ID: 27687998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.
    Arango-Velez A; González LM; Meents MJ; El Kayal W; Cooke BJ; Linsky J; Lusebrink I; Cooke JE
    Tree Physiol; 2014 Nov; 34(11):1220-39. PubMed ID: 24319029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that Ophiostomatoid Fungal Symbionts of Mountain Pine Beetle Do Not Play a Role in Overcoming Lodgepole Pine Defenses During Mass Attack.
    Fortier CE; Musso AE; Evenden ML; Zaharia LI; Cooke JEK
    Mol Plant Microbe Interact; 2024 May; 37(5):445-458. PubMed ID: 38240660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.
    Agbulu V; Zaman R; Ishangulyyeva G; Cahill JF; Erbilgin N
    Microb Ecol; 2022 Oct; 84(3):834-843. PubMed ID: 34674014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees.
    Bleiker KP; Six DL
    Microb Ecol; 2009 Jan; 57(1):191-202. PubMed ID: 18545867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi.
    Cale JA; Muskens M; Najar A; Ishangulyyeva G; Hussain A; Kanekar SS; Klutsch JG; Taft S; Erbilgin N
    Tree Physiol; 2017 Dec; 37(12):1597-1610. PubMed ID: 28985375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity related genes.
    Ibarra Caballero JR; Jeon J; Lee YH; Fraedrich S; Klopfenstein NB; Kim MS; Stewart JE
    Fungal Genet Biol; 2019 Apr; 125():84-92. PubMed ID: 30716558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutualistic Ophiostomatoid Fungi Equally Benefit from Both a Bark Beetle Pheromone and Host Tree Volatiles as Nutrient Sources.
    Liu Y; Anastacio GR; Ishangulyyeva G; Rodriguez-Ramos JC; Erbilgin N
    Microb Ecol; 2021 May; 81(4):1106-1110. PubMed ID: 33404818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species.
    Cale JA; Klutsch JG; Dykstra CB; Peters B; Erbilgin N
    Tree Physiol; 2019 Jul; 39(7):1121-1135. PubMed ID: 30877758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals.
    Lah L; Haridas S; Bohlmann J; Breuil C
    Fungal Genet Biol; 2013 Jan; 50():72-81. PubMed ID: 23111002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Native Parasitic Plant Systemically Induces Resistance in Jack Pine to a Fungal Symbiont of Invasive Mountain Pine Beetle.
    Klutsch JG; Najar A; Sherwood P; Bonello P; Erbilgin N
    J Chem Ecol; 2017 May; 43(5):506-518. PubMed ID: 28466378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle.
    Erbilgin N; Cale JA; Lusebrink I; Najar A; Klutsch JG; Sherwood P; Enrico Bonello P; Evenden ML
    Tree Physiol; 2017 Mar; 37(3):338-350. PubMed ID: 27881799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel application of RNase H2-dependent quantitative PCR for detection and quantification of Grosmannia clavigera, a mountain pine beetle fungal symbiont, in environmental samples.
    McAllister CH; Fortier CE; St Onge KR; Sacchi BM; Nawrot MJ; Locke T; Cooke JEK
    Tree Physiol; 2018 Mar; 38(3):485-501. PubMed ID: 29329457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality.
    Ott DS; Yanchuk AD; Huber DP; Wallin KF
    J Chem Ecol; 2011 Sep; 37(9):1002-12. PubMed ID: 21845434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.