These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23725041)

  • 1. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.
    Glöser S; Soulier M; Tercero Espinoza LA
    Environ Sci Technol; 2013 Jun; 47(12):6564-72. PubMed ID: 23725041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The future of copper in China--A perspective based on analysis of copper flows and stocks.
    Zhang L; Cai Z; Yang J; Yuan Z; Chen Y
    Sci Total Environ; 2015 Dec; 536():142-149. PubMed ID: 26204050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.
    Buchner H; Laner D; Rechberger H; Fellner J
    Environ Sci Technol; 2015 May; 49(9):5546-54. PubMed ID: 25851493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of copper flows in China from 1975 to 2010.
    Zhang L; Yang J; Cai Z; Yuan Z
    Sci Total Environ; 2014 Apr; 478():80-9. PubMed ID: 24530587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilevel cycle of anthropogenic copper.
    Graedel TE; van Beers D; Bertram M; Fuse K; Gordon RB; Gritsinin A; Kapur A; Klee RJ; Lifset RJ; Memon L; Rechberger H; Spatari S; Vexler D
    Environ Sci Technol; 2004 Feb; 38(4):1242-52. PubMed ID: 14998044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unearthing potentials for decarbonizing the U.S. aluminum cycle.
    Liu G; Bangs CE; Müller DB
    Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit.
    Wang T; Berrill P; Zimmerman JB; Hertwich EG
    Environ Sci Technol; 2021 Apr; 55(8):5485-5495. PubMed ID: 33783185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Will Copper Contamination Constrain Future Global Steel Recycling?
    Daehn KE; Cabrera Serrenho A; Allwood JM
    Environ Sci Technol; 2017 Jun; 51(11):6599-6606. PubMed ID: 28445647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Dissipation and Inefficient Recycling Intensify Climate Forcing.
    Ciacci L; Harper EM; Nassar NT; Reck BK; Graedel TE
    Environ Sci Technol; 2016 Oct; 50(20):11394-11402. PubMed ID: 27662206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of automobiles for the future of aluminum recycling.
    Modaresi R; Müller DB
    Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of end of life mobile phones generation: the case study of the Czech Republic.
    Polák M; Drápalová L
    Waste Manag; 2012 Aug; 32(8):1583-91. PubMed ID: 22552041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative estimation of sampling uncertainties for mycotoxins in cereal shipments.
    Bourgeois FS; Lyman GJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(7):1141-56. PubMed ID: 22651820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.
    Liang S; Zhang T; Xu Y
    Waste Manag; 2012 Mar; 32(3):603-12. PubMed ID: 22100716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional distribution and losses of end-of-life steel throughout multiple product life cycles-Insights from the global multiregional MaTrace model.
    Pauliuk S; Kondo Y; Nakamura S; Nakajima K
    Resour Conserv Recycl; 2017 Jan; 116():84-93. PubMed ID: 28216806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-of-life flows of multiple cycle consumer products.
    Tsiliyannis CA
    Waste Manag; 2011 Nov; 31(11):2302-18. PubMed ID: 21783354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Byproduct Metal Availability Constrained by Dynamics of Carrier Metal Cycle: The Gallium-Aluminum Example.
    Løvik AN; Restrepo E; Müller DB
    Environ Sci Technol; 2016 Aug; 50(16):8453-61. PubMed ID: 27400378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty.
    Simic V; Dimitrijevic B
    Waste Manag Res; 2015 Feb; 33(2):114-29. PubMed ID: 25649401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved alternatives for estimating in-use material stocks.
    Chen WQ; Graedel TE
    Environ Sci Technol; 2015 Mar; 49(5):3048-55. PubMed ID: 25636045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.