These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 23725285)
1. Dendritic cells in myelodysplastic syndromes: from pathogenesis to immunotherapy. Kerkhoff N; Bontkes HJ; Westers TM; de Gruijl TD; Kordasti S; van de Loosdrecht AA Immunotherapy; 2013 Jun; 5(6):621-37. PubMed ID: 23725285 [TBL] [Abstract][Full Text] [Related]
2. Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Aggarwal S; van de Loosdrecht AA; Alhan C; Ossenkoppele GJ; Westers TM; Bontkes HJ Br J Haematol; 2011 Jun; 153(5):568-81. PubMed ID: 21488861 [TBL] [Abstract][Full Text] [Related]
3. Impaired generation of bone marrow CD34-derived dendritic cells with low peripheral blood subsets in patients with myelodysplastic syndrome. Micheva I; Thanopoulou E; Michalopoulou S; Kakagianni T; Kouraklis-Symeonidis A; Symeonidis A; Zoumbos N Br J Haematol; 2004 Sep; 126(6):806-14. PubMed ID: 15352984 [TBL] [Abstract][Full Text] [Related]
4. Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes. Ivy KS; Brent Ferrell P Curr Hematol Malig Rep; 2018 Aug; 13(4):244-255. PubMed ID: 29934935 [TBL] [Abstract][Full Text] [Related]
5. The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. Grabrucker C; Liepert A; Dreyig J; Kremser A; Kroell T; Freudenreich M; Schmid C; Schweiger C; Tischer J; Kolb HJ; Schmetzer H J Immunother; 2010 Jun; 33(5):523-37. PubMed ID: 20463595 [TBL] [Abstract][Full Text] [Related]
6. Various 'dendritic cell antigens' are already expressed on uncultured blasts in acute myeloid leukemia and myelodysplastic syndromes. Dreyssig J; Kremser A; Liepert A; Grabrucker C; Freudenreich M; Schmid C; Kroell T; Scholl N; Tischer J; Kufner S; Salih H; Kolb HJ; Schmetzer HM Immunotherapy; 2011 Sep; 3(9):1113-24. PubMed ID: 21913833 [TBL] [Abstract][Full Text] [Related]
7. Innate immune signaling in the myelodysplastic syndromes. Starczynowski DT; Karsan A Hematol Oncol Clin North Am; 2010 Apr; 24(2):343-59. PubMed ID: 20359630 [TBL] [Abstract][Full Text] [Related]
8. The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes. Wang Z; Tang X; Xu W; Cao Z; Sun L; Li W; Li Q; Zou P; Zhao Z PLoS One; 2013; 8(3):e57470. PubMed ID: 23469196 [TBL] [Abstract][Full Text] [Related]
9. The bone marrow stem stromal imbalance--a key feature of disease progression in case of myelodysplastic mouse model. Das M; Chatterjee S; Basak P; Das P; Pereira JA; Dutta RK; Chaklader M; Chaudhuri S; Law S J Stem Cells; 2010; 5(2):49-64. PubMed ID: 22049615 [TBL] [Abstract][Full Text] [Related]
10. Bone marrow niche in the myelodysplastic syndromes. Cogle CR; Saki N; Khodadi E; Li J; Shahjahani M; Azizidoost S Leuk Res; 2015 Oct; 39(10):1020-7. PubMed ID: 26276090 [TBL] [Abstract][Full Text] [Related]
11. Myelodysplastic syndromes: the role of the immune system in pathogenesis. Warlick ED; Miller JS Leuk Lymphoma; 2011 Nov; 52(11):2045-9. PubMed ID: 21663505 [TBL] [Abstract][Full Text] [Related]
12. Myelodysplastic syndromes: the pediatric point of view. Locatelli F; Zecca M; Pession A; Maserati E; De Stefano P; Severi F Haematologica; 1995; 80(3):268-79. PubMed ID: 7672722 [TBL] [Abstract][Full Text] [Related]
13. Therapy-related myelodysplastic syndrome. Candelaria M; DueƱas-Gonzalez A Expert Opin Drug Saf; 2015 May; 14(5):655-65. PubMed ID: 25675961 [TBL] [Abstract][Full Text] [Related]
14. Immunosuppressive therapy in myelodysplastic syndromes: a borrowed therapy in search of the right place. Shallis RM; Chokr N; Stahl M; Pine AB; Zeidan AM Expert Rev Hematol; 2018 Sep; 11(9):715-726. PubMed ID: 30024293 [TBL] [Abstract][Full Text] [Related]
15. Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biology. Disperati P; Ichim CV; Tkachuk D; Chun K; Schuh AC; Wells RA Leuk Res; 2006 Feb; 30(2):233-9. PubMed ID: 16046234 [TBL] [Abstract][Full Text] [Related]
16. Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) - With a focus on Dendritic cells of leukemic origin (DC Ansprenger C; Amberger DC; Schmetzer HM Clin Immunol; 2020 Aug; 217():108467. PubMed ID: 32464186 [TBL] [Abstract][Full Text] [Related]
17. Immune dysregulation in myelodysplastic syndrome: Clinical features, pathogenesis and therapeutic strategies. Wang C; Yang Y; Gao S; Chen J; Yu J; Zhang H; Li M; Zhan X; Li W Crit Rev Oncol Hematol; 2018 Feb; 122():123-132. PubMed ID: 29458780 [TBL] [Abstract][Full Text] [Related]
18. Quality of T-cells after stimulation with leukemia-derived dendritic cells (DC) from patients with acute myeloid leukemia (AML) or myeloid dysplastic syndrome (MDS) is predictive for their leukemia cytotoxic potential. Liepert A; Grabrucker C; Kremser A; Dreyssig J; Ansprenger C; Freudenreich M; Kroell T; Reibke R; Tischer J; Schweiger C; Schmid C; Kolb HJ; Schmetzer H Cell Immunol; 2010; 265(1):23-30. PubMed ID: 20663492 [TBL] [Abstract][Full Text] [Related]
19. Dendritic cells in MDS and AML--cause, effect or solution to the immune pathogenesis of disease? Panoskaltsis N Leukemia; 2005 Mar; 19(3):354-7. PubMed ID: 15674424 [No Abstract] [Full Text] [Related]
20. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities. Abou Zahr A; Bernabe Ramirez C; Wozney J; Prebet T; Zeidan AM Expert Rev Hematol; 2016; 9(4):377-88. PubMed ID: 26734762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]