BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 23725377)

  • 1. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery.
    Sharma R; Shivpuri S; Anand A; Kulshreshtha A; Ganguli M
    Mol Pharm; 2013 Jul; 10(7):2588-600. PubMed ID: 23725377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural rearrangements and chemical modifications in known cell penetrating peptide strongly enhance DNA delivery efficiency.
    Rajpal ; Mann A; Khanduri R; Naik RJ; Ganguli M
    J Control Release; 2012 Jan; 157(2):260-71. PubMed ID: 21996011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting effects of cysteine modification on the transfection efficiency of amphipathic peptides.
    Sharma R; Nisakar D; Shivpuri S; Ganguli M
    Biomaterials; 2014 Aug; 35(24):6563-75. PubMed ID: 24816284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.
    Mann A; Shukla V; Khanduri R; Dabral S; Singh H; Ganguli M
    Mol Pharm; 2014 Mar; 11(3):683-96. PubMed ID: 24476132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new amphipathic, amino-acid-pairing (AAP) peptide as siRNA delivery carrier: physicochemical characterization and in vitro uptake.
    Jafari M; Xu W; Naahidi S; Chen B; Chen P
    J Phys Chem B; 2012 Nov; 116(44):13183-91. PubMed ID: 23077976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy.
    Duguid JG; Li C; Shi M; Logan MJ; Alila H; Rolland A; Tomlinson E; Sparrow JT; Smith LC
    Biophys J; 1998 Jun; 74(6):2802-14. PubMed ID: 9635734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of a designed amphipathic cell-penetrating peptide and its effect on solubility, secondary structure, and uptake efficiency.
    Jafari M; Karunaratne DN; Sweeting CM; Chen P
    Biochemistry; 2013 May; 52(20):3428-35. PubMed ID: 23614788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-armed poly(L-glutamic acid)-graft-oligoethylenimine copolymers as efficient nonviral gene delivery vectors.
    Chen L; Tian H; Chen J; Chen X; Huang Y; Jing X
    J Gene Med; 2010 Jan; 12(1):64-76. PubMed ID: 19842126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.
    Upadhya A; Sangave PC
    J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.
    Naik RJ; Chatterjee A; Ganguli M
    Biochim Biophys Acta; 2013 Jun; 1828(6):1484-93. PubMed ID: 23454086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency.
    Naik RJ; Sharma R; Nisakar D; Purohit G; Ganguli M
    Biochim Biophys Acta; 2015 Apr; 1848(4):1053-64. PubMed ID: 25637297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of reducible peptide oligomers as carriers for gene delivery.
    Kiselev A; Egorova A; Laukkanen A; Baranov V; Urtti A
    Int J Pharm; 2013 Jan; 441(1-2):736-47. PubMed ID: 23089582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of a series of novel amphipathic cell-penetrating peptides.
    Regberg J; Srimanee A; Erlandsson M; Sillard R; Dobchev DA; Karelson M; Langel U
    Int J Pharm; 2014 Apr; 464(1-2):111-6. PubMed ID: 24463071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide vectors for the nonviral delivery of nucleic acids.
    Hoyer J; Neundorf I
    Acc Chem Res; 2012 Jul; 45(7):1048-56. PubMed ID: 22455499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the efficiency of complexes based on S4(13)-PV cell-penetrating peptides in plasmid DNA and siRNA delivery.
    Cardoso AM; Trabulo S; Cardoso AL; Maia S; Gomes P; Jurado AS; Pedroso de Lima MC
    Mol Pharm; 2013 Jul; 10(7):2653-66. PubMed ID: 23697649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated peptides from melittin and its analog with high lytic activity at endosomal pH enhance branched polyethylenimine-mediated gene transfection.
    Tan YX; Chen C; Wang YL; Lin S; Wang Y; Li SB; Jin XP; Gao HW; Du FS; Gong F; Ji SP
    J Gene Med; 2012 Apr; 14(4):241-50. PubMed ID: 22328546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histidine-rich cationic amphipathic peptides for plasmid DNA and siRNA delivery.
    Kichler A; Mason AJ; Marquette A; Bechinger B
    Methods Mol Biol; 2013; 948():85-103. PubMed ID: 23070765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PEG- and PDMAEG-graft-modified branched PEI as novel gene vector: synthesis, characterization and gene transfection.
    Wen Y; Pan S; Luo X; Zhang W; Shen Y; Feng M
    J Biomater Sci Polym Ed; 2010; 21(8-9):1103-26. PubMed ID: 20507711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.