BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 23725661)

  • 1. The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception.
    Bartlett EL
    Brain Lang; 2013 Jul; 126(1):29-48. PubMed ID: 23725661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the Primary Auditory Thalamus When Recognizing Speech with Background Noise.
    Mihai PG; Tschentscher N; von Kriegstein K
    J Neurosci; 2021 Aug; 41(33):7136-7147. PubMed ID: 34244362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets?
    Quraishe S; Newman T; Anderson L
    J Neurosci Res; 2020 Sep; 98(9):1780-1799. PubMed ID: 31562661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-dependent modulation of medial geniculate body is behaviorally relevant for speech recognition.
    von Kriegstein K; Patterson RD; Griffiths TD
    Curr Biol; 2008 Dec; 18(23):1855-9. PubMed ID: 19062286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of tonotopic ventral medial geniculate body is behaviorally relevant for speech recognition.
    Mihai PG; Moerel M; de Martino F; Trampel R; Kiebel S; von Kriegstein K
    Elife; 2019 Aug; 8():. PubMed ID: 31453811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological differences between histologically defined subdivisions in the mouse auditory thalamus.
    Anderson LA; Linden JF
    Hear Res; 2011 Apr; 274(1-2):48-60. PubMed ID: 21185928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging.
    Sottile SY; Hackett TA; Cai R; Ling L; Llano DA; Caspary DM
    J Neurosci; 2017 Nov; 37(47):11377-11389. PubMed ID: 29061702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex.
    LeDoux JE; Farb CR; Romanski LM
    Neurosci Lett; 1991 Dec; 134(1):139-44. PubMed ID: 1815147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamic label patterns suggest primary and ventral auditory fields are distinct core regions.
    Storace DA; Higgins NC; Read HL
    J Comp Neurol; 2010 May; 518(10):1630-46. PubMed ID: 20232478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset.
    Bartlett EL; Wang X
    J Neurophysiol; 2011 Jun; 105(6):2647-67. PubMed ID: 21411564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal development of auditory central evoked responses and thalamic cellular properties.
    Venkataraman Y; Bartlett EL
    Dev Neurobiol; 2014 May; 74(5):541-55. PubMed ID: 24214269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Structural Connectivity Between Left Auditory Thalamus and the Motion-Sensitive Planum Temporale in Developmental Dyslexia.
    Tschentscher N; Ruisinger A; Blank H; Díaz B; von Kriegstein K
    J Neurosci; 2019 Feb; 39(9):1720-1732. PubMed ID: 30643025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat.
    Wenstrup JJ
    J Neurophysiol; 1999 Nov; 82(5):2528-44. PubMed ID: 10561424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Ventral" area in the rat auditory cortex: a major auditory field connected with the dorsal division of the medial geniculate body.
    Donishi T; Kimura A; Okamoto K; Tamai Y
    Neuroscience; 2006 Sep; 141(3):1553-67. PubMed ID: 16750887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
    Chambers AR; Salazar JJ; Polley DB
    Front Neural Circuits; 2016; 10():72. PubMed ID: 27630546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory thalamus dysfunction and pathophysiology in tinnitus: a predictive network hypothesis.
    Brinkmann P; Kotz SA; Smit JV; Janssen MLF; Schwartze M
    Brain Struct Funct; 2021 Jul; 226(6):1659-1676. PubMed ID: 33934235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional organization of the medial geniculate body's subdivisions of the awake squirrel monkey.
    Allon N; Yeshurun Y
    Brain Res; 1985 Dec; 360(1-2):75-82. PubMed ID: 4075184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: Impact of aging.
    Richardson BD; Sottile SY; Caspary DM
    Hear Res; 2021 Mar; 402():108003. PubMed ID: 32703637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic organization of the cat's medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex.
    Middlebrooks JC; Zook JM
    J Neurosci; 1983 Jan; 3(1):203-24. PubMed ID: 6185655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of subdivisions in the medial geniculate body of the guinea pig.
    Anderson LA; Wallace MN; Palmer AR
    Hear Res; 2007 Jun; 228(1-2):156-67. PubMed ID: 17399924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.