BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23726009)

  • 1. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri.
    Zhang SY; Sun GX; Yin XX; Rensing C; Zhu YG
    Chemosphere; 2013 Sep; 93(1):47-53. PubMed ID: 23726009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid biotransformation of arsenic by a model protozoan Tetrahymena pyriformis GL-C. [corrected].
    Yin XX; Zhang YY; Yang J; Zhu YG
    Environ Pollut; 2011 Apr; 159(4):837-40. PubMed ID: 21277055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental biochemistry of arsenic.
    Tamaki S; Frankenberger WT
    Rev Environ Contam Toxicol; 1992; 124():79-110. PubMed ID: 1732996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton.
    Lelandais G; Scheiber I; Paz-Yepes J; Lozano JC; Botebol H; Pilátová J; Žárský V; Léger T; Blaiseau PL; Bowler C; Bouget FY; Camadro JM; Sutak R; Lesuisse E
    BMC Genomics; 2016 May; 17():319. PubMed ID: 27142620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum).
    Levy JL; Stauber JL; Adams MS; Maher WA; Kirby JK; Jolley DF
    Environ Toxicol Chem; 2005 Oct; 24(10):2630-9. PubMed ID: 16268166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and bioremediation of As(III) and As(V) in the green microalgae Botryococcus braunii: A laboratory study.
    Podder MS; Majumder CB
    Int J Phytoremediation; 2017 Feb; 19(2):157-173. PubMed ID: 27409153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater.
    Karadjova IB; Slaveykova VI; Tsalev DL
    Aquat Toxicol; 2008 May; 87(4):264-71. PubMed ID: 18378014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is arsenic biotransformation a detoxification mechanism for microorganisms?
    Rahman MA; Hassler C
    Aquat Toxicol; 2014 Jan; 146():212-9. PubMed ID: 24321575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flotation of marine microalgae: effect of algal hydrophobicity.
    Garg S; Li Y; Wang L; Schenk PM
    Bioresour Technol; 2012 Oct; 121():471-4. PubMed ID: 22858117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomethylation and Volatilization of Arsenic by Model Protozoan Tetrahymena pyriformis under Different Phosphate Regimes.
    Yin X; Wang L; Zhang Z; Fan G; Liu J; Sun K; Sun GX
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28216593
    [No Abstract]   [Full Text] [Related]  

  • 11. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.
    Dhuldhaj UP; Yadav IC; Singh S; Sharma NK
    Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial responses to environmental arsenic.
    Páez-Espino D; Tamames J; de Lorenzo V; Cánovas D
    Biometals; 2009 Feb; 22(1):117-30. PubMed ID: 19130261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demethylation of arsenic limits its volatilization in fungi.
    Su S; Zeng X; Feng Q; Bai L; Zhang L; Jiang S; Li A; Duan R; Wang X; Wu C; Wang Y
    Environ Pollut; 2015 Sep; 204():141-4. PubMed ID: 25951513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated effects of important environmental factors on arsenic biotransformation and photosynthetic efficiency by marine microalgae.
    Papry RI; Fujisawa S; Yinghan Z; Akhyar O; Al Mamun MA; Mashio AS; Hasegawa H
    Ecotoxicol Environ Saf; 2020 Sep; 201():110797. PubMed ID: 32505760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption-desorption kinetics and toxic cell concentration in marine phytoplankton microalgae exposed to Linear Alkylbenzene Sulfonate.
    Renaud F; Oberhänsli F; Teyssié JL; Miramand P; Temara A; Warnau M
    Mar Pollut Bull; 2011 May; 62(5):942-7. PubMed ID: 21435668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.
    Chen J; Sun GX; Wang XX; Lorenzo Vd; Rosen BP; Zhu YG
    Environ Sci Technol; 2014 Sep; 48(17):10337-44. PubMed ID: 25122054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features of the Opportunistic Behaviour of the Marine Bacterium
    Pinto J; Lami R; Krasovec M; Grimaud R; Urios L; Lupette J; Escande ML; Sanchez F; Intertaglia L; Grimsley N; Piganeau G; Sanchez-Brosseau S
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.
    Huang H; Jia Y; Sun GX; Zhu YG
    Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.
    Jia Y; Huang H; Sun GX; Zhao FJ; Zhu YG
    Environ Sci Technol; 2012 Aug; 46(15):8090-6. PubMed ID: 22724924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of diclofenac by two green microalgae: Picocystis sp. and Graesiella sp.
    Ben Ouada S; Ben Ali R; Cimetiere N; Leboulanger C; Ben Ouada H; Sayadi S
    Ecotoxicol Environ Saf; 2019 Dec; 186():109769. PubMed ID: 31614298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.