These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 23726289)

  • 1. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain distribution in the lumbar vertebrae under different loading configurations.
    Cristofolini L; Brandolini N; Danesi V; Juszczyk MM; Erani P; Viceconti M
    Spine J; 2013 Oct; 13(10):1281-92. PubMed ID: 23958297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk.
    Tommasini SM; Nasser P; Schaffler MB; Jepsen KJ
    J Bone Miner Res; 2005 Aug; 20(8):1372-80. PubMed ID: 16007335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.
    Heinlein B; Kutzner I; Graichen F; Bender A; Rohlmann A; Halder AM; Beier A; Bergmann G
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):315-26. PubMed ID: 19285767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sagittal plane bending moments acting on the lower leg during running.
    Haris Phuah A; Schache AG; Crossley KM; Wrigley TV; Creaby MW
    Gait Posture; 2010 Feb; 31(2):218-22. PubMed ID: 19926481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal loads in the human tibia during gait.
    Wehner T; Claes L; Simon U
    Clin Biomech (Bristol, Avon); 2009 Mar; 24(3):299-302. PubMed ID: 19185959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of high versus low loading on bone strength in middle life.
    Milgrom C; Constantini N; Milgrom Y; Lavi D; Appelbaum Y; Novack V; Finestone A
    Bone; 2012 Apr; 50(4):865-9. PubMed ID: 22252043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro fixator rod loading after transforaminal compared to anterior lumbar interbody fusion.
    Kettler A; Niemeyer T; Issler L; Merk U; Mahalingam M; Werner K; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):435-42. PubMed ID: 16442678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary factors affecting maximum torsional loading of the tibia in running.
    Kawamoto R; Ishige Y; Watarai K; Fukashiro S
    Sports Biomech; 2002 Jul; 1(2):167-86. PubMed ID: 14658374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical properties of the ovine tibia: a suitable animal model to study the pin-bone interface in fracture fixation?
    Finlay JB; Hurtig MB; Hardie WR; Liggins AB; Batte SW
    Proc Inst Mech Eng H; 1995; 209(1):37-50. PubMed ID: 7669119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method.
    Sonoda N; Chosa E; Totoribe K; Tajima N
    J Orthop Sci; 2003; 8(4):505-13. PubMed ID: 12898301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of strain in the macaque tibia during functional activity.
    Demes B; Qin YX; Stern JT; Larson SG; Rubin CT
    Am J Phys Anthropol; 2001 Dec; 116(4):257-65. PubMed ID: 11745077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes.
    Nikander R; Sievänen H; Uusi-Rasi K; Heinonen A; Kannus P
    Bone; 2006 Oct; 39(4):886-94. PubMed ID: 16731064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone stress in runners with tibial stress fracture.
    Meardon SA; Willson JD; Gries SR; Kernozek TW; Derrick TR
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):895-902. PubMed ID: 26282463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of porous coating and collar support on early load transfer for a cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Biomech; 1993 Oct; 26(10):1205-16. PubMed ID: 8253825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strength indices from pQCT imaging predict up to 85% of variance in bone failure properties at tibial epiphysis and diaphysis.
    Kontulainen SA; Johnston JD; Liu D; Leung C; Oxland TR; McKay HA
    J Musculoskelet Neuronal Interact; 2008; 8(4):401-9. PubMed ID: 19147978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.