These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 23726289)

  • 21. In vitro evidence of the structural optimization of the human skeletal bones.
    Cristofolini L
    J Biomech; 2015 Mar; 48(5):787-96. PubMed ID: 25596628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice.
    Silva MJ; Brodt MD; Hucker WJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):380-90. PubMed ID: 15747345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone.
    Shin CS; Chaudhari AM; Andriacchi TP
    Med Sci Sports Exerc; 2011 Aug; 43(8):1484-91. PubMed ID: 21266934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical impact testing of synthetic versus human cadaveric tibias for predicting injury risk during pedestrian-vehicle collisions.
    Cameron MW; Schemitsch EH; Zdero R; Quenneville CE
    Traffic Inj Prev; 2020; 21(2):163-168. PubMed ID: 32023127
    [No Abstract]   [Full Text] [Related]  

  • 25. Mechanical validation of whole bone composite tibia models.
    Cristofolini L; Viceconti M
    J Biomech; 2000 Mar; 33(3):279-88. PubMed ID: 10673111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do counteracting external frontal plane moments alter the intraarticular contact force distribution in the loaded human tibiofemoral joint?
    Engel K; Brüggemann GP; Heinrich K; Potthast W; Liebau C
    Knee; 2015 Mar; 22(2):68-72. PubMed ID: 25555618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP; Chong AC; Pollock AG; Wooley PH
    Ann Biomed Eng; 2010 Mar; 38(3):613-20. PubMed ID: 20049637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A biomechanical analysis of an instrumented spinal fixator under torsional loads.
    Alkalay RN; Sharpe D; Bader DL
    J Biomech; 2005 Apr; 38(4):865-76. PubMed ID: 15713308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of bone strain measurements at anatomically relevant sites using surface gauges versus strain gauged bone staples.
    Milgrom C; Finestone A; Hamel A; Mandes V; Burr D; Sharkey N
    J Biomech; 2004 Jun; 37(6):947-52. PubMed ID: 15111084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.
    Van Toen C; Carter JW; Oxland TR; Cripton PA
    J Biomech Eng; 2014 Dec; 136(12):124505. PubMed ID: 25322158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing.
    Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):977-83. PubMed ID: 16790304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loading model for the human femur taking the tension band effect of the ilio-tibial tract into account.
    Cordey J; Borgeaud M; Frankle M; Harder Y; Martinet O
    Injury; 1999; 30 Suppl 1():A26-30. PubMed ID: 10645366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the structural and material properties of the tibia in patients with spinal cord injury.
    McCarthy ID; Bloomer Z; Gall A; Keen R; Ferguson-Pell M
    Spinal Cord; 2012 Apr; 50(4):333-7. PubMed ID: 22124349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of concurrent fibular fracture on the fixation of distal tibia fractures: a laboratory comparison of intramedullary nails with locked plates.
    Strauss EJ; Alfonso D; Kummer FJ; Egol KA; Tejwani NC
    J Orthop Trauma; 2007 Mar; 21(3):172-7. PubMed ID: 17473753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural differences in cortical shell properties between upper and lower human fibula as described by pQCT serial scans. A biomechanical interpretation.
    Cointry GR; Nocciolino L; Ireland A; Hall NM; Kriechbaumer A; Ferretti JL; Rittweger J; Capozza RF
    Bone; 2016 Sep; 90():185-94. PubMed ID: 27302664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rat bone properties and their relationship to gait during growth.
    Song H; Polk JD; Kersh ME
    J Exp Biol; 2019 Sep; 222(Pt 18):. PubMed ID: 31492819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of in vivo strain in the rat tibia during external application of a four-point bending load.
    Akhter MP; Raab DM; Turner CH; Kimmel DB; Recker RR
    J Biomech; 1992 Oct; 25(10):1241-6. PubMed ID: 1400526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tibial Bone Strength is Enhanced in the Jump Leg of Collegiate-Level Jumping Athletes: A Within-Subject Controlled Cross-Sectional Study.
    Weatherholt AM; Warden SJ
    Calcif Tissue Int; 2016 Feb; 98(2):129-39. PubMed ID: 26543032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.