BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23726385)

  • 1. One-way wicking in open micro-channels controlled by channel topography.
    Feng J; Rothstein JP
    J Colloid Interface Sci; 2013 Aug; 404():169-78. PubMed ID: 23726385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wicking Enhanced Critical Heat Flux for Highly Wetting Fluids on Structured Surfaces.
    Rahman MM; Ridwan S; Fehlinger D; McCarthy M
    Langmuir; 2020 Aug; 36(32):9643-9648. PubMed ID: 32686421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.
    Chen H; Cogswell J; Anagnostopoulos C; Faghri M
    Lab Chip; 2012 Aug; 12(16):2909-13. PubMed ID: 22699228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan.
    Li G; Parmar M; Kim D; Lee JB; Lee DW
    Lab Chip; 2014 Jan; 14(1):200-9. PubMed ID: 24193151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastocapillarity: stress transfer through fibrous probes in wicking experiments.
    Monaenkova D; Kornev KG
    J Colloid Interface Sci; 2010 Aug; 348(1):240-9. PubMed ID: 20444467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
    Liu C; Cui D; Li H
    Biosens Bioelectron; 2010 Sep; 26(1):255-61. PubMed ID: 20655729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching.
    Kalish B; Tan MK; Tsutsui H
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional Water Wicking on a Metal Surface Patterned by Microchannels.
    Abbaspour N; Beltrame P; Néel MC; Schulz VP
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.
    Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Electrophoresis; 2008 Mar; 29(6):1237-44. PubMed ID: 18288777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic stickers.
    Bartolo D; Degré G; Nghe P; Studer V
    Lab Chip; 2008 Feb; 8(2):274-9. PubMed ID: 18231666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional Liquid Wicking in Regular Arrays of Triangular Posts.
    Liu BY; Seemann R; Chen LJ; Brinkmann M
    Langmuir; 2019 Dec; 35(50):16476-16486. PubMed ID: 31724868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop.
    Taller D; Go DB; Chang HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053004. PubMed ID: 23767617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of microfluidic flow in amphiphilic fabrics.
    Owens TL; Leisen J; Beckham HW; Breedveld V
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3796-803. PubMed ID: 21942403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of evaporation on the wicking of liquids into a metallic weave.
    Fries N; Odic K; Conrath M; Dreyer M
    J Colloid Interface Sci; 2008 May; 321(1):118-29. PubMed ID: 18272170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-ply channels for faster wicking in paper-based microfluidic devices.
    Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW
    Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.