BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23726712)

  • 1. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes.
    Wert EC; Dong MM; Rosario-Ortiz FL
    Water Res; 2013 Jul; 47(11):3752-61. PubMed ID: 23726712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species.
    Wert EC; Korak JA; Trenholm RA; Rosario-Ortiz FL
    Water Res; 2014 Apr; 52():251-9. PubMed ID: 24289950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water.
    Korak JA; Wert EC; Rosario-Ortiz FL
    Water Res; 2015 Jan; 68():432-43. PubMed ID: 25462750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.
    Ramseier MK; Peter A; Traber J; von Gunten U
    Water Res; 2011 Feb; 45(5):2002-10. PubMed ID: 21220144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation.
    Daly RI; Ho L; Brookes JD
    Environ Sci Technol; 2007 Jun; 41(12):4447-53. PubMed ID: 17626450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of oxidant demand on the release and degradation of microcystin-LR from Microcystis aeruginosa during oxidation.
    Zhang H; Dan Y; Adams CD; Shi H; Ma Y; Eichholz T
    Chemosphere; 2017 Aug; 181():562-568. PubMed ID: 28463731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Advanced Spectroscopy and Organic Matter Characterization to Evaluate the Impact of Oxidation on Cyanobacteria.
    Moradinejad S; Glover CM; Mailly J; Seighalani TZ; Peldszus S; Barbeau B; Dorner S; Prévost M; Zamyadi A
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31108999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of chlorine on the cell integrity and toxin release and degradation of colonial Microcystis.
    Fan J; Rao L; Chiu YT; Lin TF
    Water Res; 2016 Oct; 102():394-404. PubMed ID: 27393964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria.
    Greenstein KE; Zamyadi A; Glover CM; Adams C; Rosenfeldt E; Wert EC
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32443714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.
    Ramseier MK; von Gunten U; Freihofer P; Hammes F
    Water Res; 2011 Jan; 45(3):1490-500. PubMed ID: 21146846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine.
    Son H; Cho M; Kim J; Oh B; Chung H; Yoon J
    Water Res; 2005 Feb; 39(4):721-7. PubMed ID: 15707645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism of Pseudoanabaena cell inactivation, 2-MIB release and degradation under exposure of ozone, chlorine and permanganate.
    Li L; Zhu C; Xie C; Shao C; Yu S; Zhao L; Gao N
    Water Res; 2018 Dec; 147():422-428. PubMed ID: 30342337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.
    Korich DG; Mead JR; Madore MS; Sinclair NA; Sterling CR
    Appl Environ Microbiol; 1990 May; 56(5):1423-8. PubMed ID: 2339894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the efficacy of chlorine, chlorine dioxide, and ozone in the inactivation of Cryptosporidium parvum in water from Parana State, Southern Brazil.
    Pereira JT; Costa AO; de Oliveira Silva MB; Schuchard W; Osaki SC; de Castro EA; Paulino RC; Soccol VT
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):464-73. PubMed ID: 18498060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of disinfectants on a geosmin-producing strain of Streptomyces griseus.
    Whitmore TN; Denny S
    J Appl Bacteriol; 1992 Feb; 72(2):160-5. PubMed ID: 1556039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of fungal spore staining methods for flow cytometric quantification and their application in chlorine-based disinfection.
    Wen G; Cao R; Wan Q; Tan L; Xu X; Wang J; Huang T
    Chemosphere; 2020 Mar; 243():125453. PubMed ID: 31995893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Inactivation and removal of chlorine dioxide on cyclops of zooplankton].
    Zhao ZW; Cui FY; Lin T; Liu GP
    Huan Jing Ke Xue; 2007 Aug; 28(8):1759-62. PubMed ID: 17926406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [First results on the use of chloramines to reduce disinfection byproducts in drinking water].
    Azara A; Muresu E; Dettori M; Ciappeddu P; Deidda A; Maida A
    Ig Sanita Pubbl; 2010; 66(5):583-600. PubMed ID: 21135901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity.
    Fan J; Ho L; Hobson P; Brookes J
    Water Res; 2013 Sep; 47(14):5153-64. PubMed ID: 23866133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.
    Hua G; Reckhow DA
    Water Res; 2007 Apr; 41(8):1667-78. PubMed ID: 17360020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.