These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23726784)
1. Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb). Marsay L; Matsumiya M; Tanner R; Poyntz H; Griffiths KL; Stylianou E; Marsh PD; Williams A; Sharpe S; Fletcher H; McShane H Tuberculosis (Edinb); 2013 Sep; 93(5):551-7. PubMed ID: 23726784 [TBL] [Abstract][Full Text] [Related]
2. A new tool for tuberculosis vaccine screening: Ex vivo Mycobacterial Growth Inhibition Assay indicates BCG-mediated protection in a murine model of tuberculosis. Zelmer A; Tanner R; Stylianou E; Damelang T; Morris S; Izzo A; Williams A; Sharpe S; Pepponi I; Walker B; Hokey DA; McShane H; Brennan M; Fletcher H BMC Infect Dis; 2016 Aug; 16():412. PubMed ID: 27519524 [TBL] [Abstract][Full Text] [Related]
3. Optimisation of a murine splenocyte mycobacterial growth inhibition assay using virulent Mycobacterium tuberculosis. Jensen C; Lindebo Holm L; Svensson E; Aagaard C; Ruhwald M Sci Rep; 2017 Jun; 7(1):2830. PubMed ID: 28588268 [TBL] [Abstract][Full Text] [Related]
4. [Novel vaccines against M. tuberculosis]. Okada M Kekkaku; 2006 Dec; 81(12):745-51. PubMed ID: 17240920 [TBL] [Abstract][Full Text] [Related]
5. Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Hwang SA; Kruzel ML; Actor JK Int Immunopharmacol; 2005 Mar; 5(3):591-9. PubMed ID: 15683854 [TBL] [Abstract][Full Text] [Related]
6. A simplified mycobacterial growth inhibition assay (MGIA) using direct infection of mouse splenocytes and the MGIT system. Yang AL; Schmidt TE; Stibitz S; Derrick SC; Morris SL; Parra M J Microbiol Methods; 2016 Dec; 131():7-9. PubMed ID: 27650198 [TBL] [Abstract][Full Text] [Related]
7. Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: Tanner R; Satti I; Harris SA; O'Shea MK; Cizmeci D; O'Connor D; Chomka A; Matsumiya M; Wittenberg R; Minassian AM; Meyer J; Fletcher HA; McShane H Front Immunol; 2019; 10():2983. PubMed ID: 31998295 [TBL] [Abstract][Full Text] [Related]
9. Heterologous Boost Following Wu Y; Cai M; Ma J; Teng X; Tian M; Bassuoney EBMB; Fan X Front Immunol; 2018; 9():2439. PubMed ID: 30425711 [TBL] [Abstract][Full Text] [Related]
10. Demonstrating the utility of the ex vivo murine mycobacterial growth inhibition assay (MGIA) for high-throughput screening of tuberculosis vaccine candidates against multiple Mycobacterium tuberculosis complex strains. Painter H; Willcocks S; Zelmer A; Reljic R; Tanner R; Fletcher H Tuberculosis (Edinb); 2024 May; 146():102494. PubMed ID: 38367368 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Immunogenicity and Protective Efficacy Elicited by Mycobacterium bovis BCG Overexpressing Ag85A Protein against Mycobacterium tuberculosis Aerosol Infection. Xu ZZ; Chen X; Hu T; Meng C; Wang XB; Rao Y; Zhang XM; Yin YL; Pan ZM; Jiao XA Front Cell Infect Microbiol; 2016; 6():3. PubMed ID: 26858942 [TBL] [Abstract][Full Text] [Related]
12. The Impact of Genome Region of Difference 4 (RD4) on Mycobacterial Virulence and BCG Efficacy. Ru H; Liu X; Lin C; Yang J; Chen F; Sun R; Zhang L; Liu J Front Cell Infect Microbiol; 2017; 7():239. PubMed ID: 28642843 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy. Lu M; Xia ZY; Bao L Cell Immunol; 2013; 285(1-2):111-7. PubMed ID: 24177251 [TBL] [Abstract][Full Text] [Related]
14. Mycobacterium bovis BCG-specific Th17 cells confer partial protection against Mycobacterium tuberculosis infection in the absence of gamma interferon. Wozniak TM; Saunders BM; Ryan AA; Britton WJ Infect Immun; 2010 Oct; 78(10):4187-94. PubMed ID: 20679438 [TBL] [Abstract][Full Text] [Related]
15. PPD induced in vitro interferon gamma production is not a reliable correlate of protection against Mycobacterium tuberculosis. Elias D; Akuffo H; Britton S Trans R Soc Trop Med Hyg; 2005 May; 99(5):363-8. PubMed ID: 15780343 [TBL] [Abstract][Full Text] [Related]
16. Polyfunctional CD4 T-cells correlate with in vitro mycobacterial growth inhibition following Mycobacterium bovis BCG-vaccination of infants. Smith SG; Zelmer A; Blitz R; Fletcher HA; Dockrell HM Vaccine; 2016 Oct; 34(44):5298-5305. PubMed ID: 27622301 [TBL] [Abstract][Full Text] [Related]
17. Effects of DNA- and Mycobacterium bovis BCG-based delivery of the Flt3 ligand on protective immunity to Mycobacterium tuberculosis. Triccas JA; Shklovskaya E; Spratt J; Ryan AA; Palendira U; Fazekas de St Groth B; Britton WJ Infect Immun; 2007 Nov; 75(11):5368-75. PubMed ID: 17724075 [TBL] [Abstract][Full Text] [Related]
18. Aerosol immunization by alginate coated mycobacterium (BCG/MIP) particles provide enhanced immune response and protective efficacy than aerosol of plain mycobacterium against M.tb. H37Rv infection in mice. Nagpal PS; Kesarwani A; Sahu P; Upadhyay P BMC Infect Dis; 2019 Jul; 19(1):568. PubMed ID: 31262260 [TBL] [Abstract][Full Text] [Related]
19. Mycobacterial Lipoprotein Z Triggers Efficient Innate and Adaptive Immunity for Protection Against Chen Y; Xiao JN; Li Y; Xiao YJ; Xiong YQ; Liu Y; Wang SJ; Ji P; Zhao GP; Shen H; Lu SH; Fan XY; Wang Y Front Immunol; 2018; 9():3190. PubMed ID: 30700988 [TBL] [Abstract][Full Text] [Related]
20. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Elias D; Akuffo H; Pawlowski A; Haile M; Schön T; Britton S Vaccine; 2005 Feb; 23(11):1326-34. PubMed ID: 15661380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]