BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23726883)

  • 1. Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes.
    Xu H; Yu G; Jiang H
    Chemosphere; 2013 Sep; 93(1):75-81. PubMed ID: 23726883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation.
    Xu H; Jiang H; Yu G; Yang L
    Chemosphere; 2014 Dec; 117():815-22. PubMed ID: 25465953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial blooms in a eutrophic freshwater lake.
    Xu H; Jiang H
    Water Res; 2013 Nov; 47(17):6506-15. PubMed ID: 24041526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and bacterial community dynamics during extracellular polymeric substance (EPS) degradation of cyanobacterial blooms.
    Ye T; Zhao Z; Bai L; Song N; Jiang H
    Sci Total Environ; 2020 Dec; 748():142309. PubMed ID: 33113670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes.
    Xu H; Jiang H
    Environ Pollut; 2015 Feb; 197():231-239. PubMed ID: 25434866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes.
    Wang Z; Li D; Qin H; Li Y
    Environ Pollut; 2012 Jan; 160(1):34-41. PubMed ID: 22035923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus Accumulation in Extracellular Polymeric Substances (EPS) of Colony-Forming Cyanobacteria Challenges Imbalanced Nutrient Reduction Strategies in Eutrophic Lakes.
    Duan Z; Tan X; Shi L; Zeng Q; Ali I; Zhu R; Chen H; Parajuli K
    Environ Sci Technol; 2023 Jan; 57(4):1600-1612. PubMed ID: 36642923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of molecular weight fractions and chemical properties of time-series cyanobacterial extracellular polymeric substances on the aggregation of lake colloidal particles.
    Si W; Xu H; Kong M; Liu J; Xu M; Liu X
    Sci Total Environ; 2019 Nov; 692():1201-1208. PubMed ID: 31539951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.
    Zhang M; Duan H; Shi X; Yu Y; Kong F
    Water Res; 2012 Feb; 46(2):442-52. PubMed ID: 22123520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study.
    Cui Y; Jin L; Ko SR; Chun SJ; Oh HS; Lee CS; Srivastava A; Oh HM; Ahn CY
    Sci Rep; 2017 Aug; 7(1):7827. PubMed ID: 28798489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China).
    Qin B; Li W; Zhu G; Zhang Y; Wu T; Gao G
    J Hazard Mater; 2015 Apr; 287():356-63. PubMed ID: 25679801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus release from cyanobacterial blooms during their decline period in eutrophic Dianchi Lake, China.
    Zhang S; Wang W; Zhang K; Xu P; Lu Y
    Environ Sci Pollut Res Int; 2018 May; 25(14):13579-13588. PubMed ID: 29497941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols.
    D'Abzac P; Bordas F; Van Hullebusch E; Lens PN; Guibaud G
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1589-99. PubMed ID: 19862516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How rising CO
    Visser PM; Verspagen JMH; Sandrini G; Stal LJ; Matthijs HCP; Davis TW; Paerl HW; Huisman J
    Harmful Algae; 2016 Apr; 54():145-159. PubMed ID: 28073473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS).
    Pereira SB; Sousa A; Santos M; Araújo M; Serôdio F; Granja P; Tamagnini P
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted deep sequencing reveals high diversity and variable dominance of bloom-forming cyanobacteria in eutrophic lakes.
    Jiang Y; Xiao P; Liu Y; Wang J; Li R
    Harmful Algae; 2017 Apr; 64():42-50. PubMed ID: 28427571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanobacterial blooms act as sink and source of endocrine disruptors in the third largest freshwater lake in China.
    Jia Y; Chen Q; Crawford SE; Song L; Chen W; Hammers-Wirtz M; Strauss T; Seiler TB; Schäffer A; Hollert H
    Environ Pollut; 2019 Feb; 245():408-418. PubMed ID: 30453139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa.
    Bai L; Xu H; Wang C; Deng J; Jiang H
    Chemosphere; 2016 Nov; 162():172-80. PubMed ID: 27497347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management.
    Carvalho L; Miller nee Ferguson CA; Scott EM; Codd GA; Davies PS; Tyler AN
    Sci Total Environ; 2011 Nov; 409(24):5353-8. PubMed ID: 21975001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China.
    Wu T; Qin B; Brookes JD; Shi K; Zhu G; Zhu M; Yan W; Wang Z
    Sci Total Environ; 2015 Jun; 518-519():24-30. PubMed ID: 25747360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.