These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23727365)
1. Proteogenomic insights into salt tolerance by a halotolerant alpha-proteobacterium isolated from an Andean saline spring. Rubiano-Labrador C; Bland C; Miotello G; Guérin P; Pible O; Baena S; Armengaud J J Proteomics; 2014 Jan; 97():36-47. PubMed ID: 23727365 [TBL] [Abstract][Full Text] [Related]
2. Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics. Rubiano-Labrador C; Bland C; Miotello G; Armengaud J; Baena S PLoS One; 2015; 10(8):e0135065. PubMed ID: 26287734 [TBL] [Abstract][Full Text] [Related]
3. Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Díaz-Cárdenas C; Patel BKC; Baena S Int J Syst Evol Microbiol; 2010 Jun; 60(Pt 6):1437-1443. PubMed ID: 19671725 [TBL] [Abstract][Full Text] [Related]
4. Non-model organisms, a species endangered by proteogenomics. Armengaud J; Trapp J; Pible O; Geffard O; Chaumot A; Hartmann EM J Proteomics; 2014 Jun; 105():5-18. PubMed ID: 24440519 [TBL] [Abstract][Full Text] [Related]
5. Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate. Gallois N; Alpha-Bazin B; Ortet P; Barakat M; Piette L; Long J; Berthomieu C; Armengaud J; Chapon V J Proteomics; 2018 Apr; 177():148-157. PubMed ID: 29223802 [TBL] [Abstract][Full Text] [Related]
6. Draft genome and description of Consotaella salsifontis gen. nov. sp. nov., a halophilic, free-living, nitrogen-fixing alphaproteobacterium isolated from an ancient terrestrial saline spring. Díaz-Cárdenas C; Bernal LF; Caro-Quintero A; López G; David Alzate J; Gonzalez LN; Restrepo S; Shapiro N; Woyke T; Kyrpides NC; Baena S Int J Syst Evol Microbiol; 2017 Oct; 67(10):3744-3751. PubMed ID: 28875905 [TBL] [Abstract][Full Text] [Related]
7. Tandem mass tag-based quantitative proteomics reveals osmotic adaptation mechanisms in Alkalicoccus halolimnae BZ-SZ-XJ29 Xing Q; Mesbah NM; Wang H; Zhang Y; Li J; Zhao B Environ Microbiol; 2023 Oct; 25(10):1967-1987. PubMed ID: 37271582 [TBL] [Abstract][Full Text] [Related]
8. The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics. Lin J; Liang H; Yan J; Luo L J Proteomics; 2017 Sep; 168():1-14. PubMed ID: 28843533 [TBL] [Abstract][Full Text] [Related]
9. Revealing the salinity adaptation mechanism in halotolerant bacterium Egicoccus halophilus EGI 80432 Chen DD; Fang BZ; Manzoor A; Liu YH; Li L; Mohamad OAA; Shu WS; Li WJ Appl Microbiol Biotechnol; 2021 Mar; 105(6):2497-2511. PubMed ID: 33625547 [TBL] [Abstract][Full Text] [Related]
10. Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes. Kumar D; Mondal AK; Kutum R; Dash D Proteomics; 2016 Jan; 16(2):226-40. PubMed ID: 26773550 [TBL] [Abstract][Full Text] [Related]
11. Elucidating the fungal stress response by proteomics. Kroll K; Pähtz V; Kniemeyer O J Proteomics; 2014 Jan; 97():151-63. PubMed ID: 23756228 [TBL] [Abstract][Full Text] [Related]
12. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis. Zhang Y; Li Y; Zhang Y; Wang Z; Zhao M; Su N; Zhang T; Chen L; Wei W; Luo J; Zhou Y; Xu Y; Xu P; Li W; Tao Y J Proteome Res; 2016 Jan; 15(1):68-85. PubMed ID: 26549328 [TBL] [Abstract][Full Text] [Related]
13. Understanding the mechanisms of halotolerance in members of Zhou P; Bu YX; Xu L; Xu XW; Shen HB Front Microbiol; 2023; 14():1111472. PubMed ID: 36992937 [TBL] [Abstract][Full Text] [Related]
14. Proteome profile and proteogenomics of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor. Schiffmann CL; Jehmlich N; Otto W; Hansen R; Nielsen PH; Adrian L; Seifert J; von Bergen M J Proteomics; 2014 Feb; 98():59-64. PubMed ID: 24374378 [TBL] [Abstract][Full Text] [Related]
16. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
17. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
18. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. Müller SA; Findeiß S; Pernitzsch SR; Wissenbach DK; Stadler PF; Hofacker IL; von Bergen M; Kalkhof S J Proteomics; 2013 Jun; 86():27-42. PubMed ID: 23665149 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. Fercha A; Capriotti AL; Caruso G; Cavaliere C; Samperi R; Stampachiacchiere S; Laganà A J Proteomics; 2014 Aug; 108():238-57. PubMed ID: 24859728 [TBL] [Abstract][Full Text] [Related]
20. DegP protease is essential for tolerance to salt stress in the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Leandro MR; Vespoli LS; Andrade LF; Soares FS; Boechat AL; Pimentel VR; Moreira JR; Passamani LZ; Silveira V; de Souza Filho GA Microbiol Res; 2021 Feb; 243():126654. PubMed ID: 33285429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]